69709 - X-Ray and Synchrotron Radiation Physics

Academic Year 2015/2016

  • Moduli: Federico Boscherini (Modulo 1) Francesco Borgatti (Modulo 2)
  • Teaching Mode: Traditional lectures (Modulo 1) Traditional lectures (Modulo 2)
  • Campus: Bologna
  • Corso: Second cycle degree programme (LM) in Physics (cod. 8025)

Learning outcomes

The student will acquire basic knowledge on: principal x-ray physical quantities in relation to atomic, molecular and solid state counterparts and conservation laws; general aspects of the interaction between x-rays and matter; linear response theory; optical theorem; properties of synchrotron radiation sources and their physical origin; main experimental methods: x-ray diffraction, x-ray absorption spectroscopy, photoemission, small and wide angle x-ray scattering, x-ray magnetic dichroism.

Course contents

The aim of the course is to illustrate the physical basis of the interaction between x-rays and condensed matter and the main experimental methods used in present day research in condensed matter and applied physics.
The description of the interaction between x-rays and matter will start with the aid of the damped oscillator model. The interaction will be described both with a macroscopic approach (dielectric function) and an atomic one (atomic form factor); the relation between these approaches will be described, along with the optical theorem, the Kramers - Kroenig relations and introductory linear response theory.
X-ray matter interaction will then be described in quantum terms. First of all, the main interaction mechanisms will be described in terms of interction between photons and atoms: photoelectric absorption (and de-excitation mechanisms), elastic and inelastic scattering. Subsequently, time dependent perturbation theory will be used to derive the cross sections of these processes for hydrogen like atoms. stressing the approximations used and the effects of energy and angular momentum conservation. Finally, the extension to multielectron atoms, molecules and solids will be mentioned.
After a brief description of the constructive elements of electron storage rings, the physical basis which explain the main properties of synchrotron radiations sources will be illustrated; the properties which derive from physical laws, such as the principle of superposition for waves, the relativistic Lorentz transformations and the Heisenber uncertainty principle, and those which are a consequence of the constructive limitations of the accelerators will be distinguished. A brief mention of the new sources based on linear accelerators (free electron lasers) will be made.
The main experimental methods used in current research using synchrotron radiation in condensed matter and applied physics will be described: x-ray diffraction, x-ray absorption spectroscopy, photoemission and x-ray magnetic dichroism.



Readings/Bibliography

[1] F. Boscherini, lezione Introduzione ai raggi X, reperibile su campus.unibo.it. 

[2] J. Als – Nielsen and D. McMorrow, Introduction to Modern X-ray Physics, Wiley, New York, 2001. 

[3] D. Attwood, Soft X-rays and extreme ultraviolet radiation, Cambridge University Press (1999).

[4] F. Boscherini, lezione Sorgenti di Luce di Sincrotrone, reperibile su campus.unibo.it.

 [5] A. Balerna and S. Mobilio, Introduction to Synchrotron Radiation, in “Synchrotron Radiation: Basics, Methods and Applications”, a cura di S. Mobilio, F. Boscherini e C. Meneghini, Springer (2015).

 [6] J.D. Jackson, Classical Electrodynamics, 3rd edition, Wiley, New York (1999).

 [7] F. Boscherini, lezione Ottiche per luce di sincrotrone, reperibile su campus.unibo.it. 

[8] F. Boscherini, dispense Interazione radiazione – atomi idrogenoidi, reperibile su campus.unibo.it. 

[9] B.H. Bransden and C.J. Joachain, “Physics of atoms and molecules”, 2nd edition, Prentice Hall (2003) 

[10] P. Fornasini, lezione X – ray absorption spectroscopy, reperibile sul sito www.synchrotron-radiation.it (Attività SILS/ scuola di Luce / Grado 2013). 

[11] P. Fornasini, Introduction to X-ray absorption spectroscopy, in “Synchrotron Radiation: Basics, Methods and Applications”, a cura di S. Mobilio, F. Boscherini e C. Meneghini, Springer (2015). 

[12] B. Bunker, Introduction to XAFS: a practical guide to X-ray absorption spectroscopy, Cambridge University Press (2010). 

[13] C. Meneghini, lezione The XANES Region, reperibile sul sito reperibile sul sito www.synchrotron-radiation.it (Attività SILS/ scuola di Luce / Grado 2013).

 [14] F. Boscherini, lezione Dicroismo lineare in XAS, reperibile su campus.unibo.it.

 [15] F. Boscherini, lezione XAFS esempi, reperibile su campus.unibo.it 

[16] F. Boscherini, lezioni su Spettroscopia di fotoemissione, reperibile su campus.unibo.it. 

[17] C. Mariani e G. Stefani, Photoemission Spectroscopy: fundamental aspects in “Synchrotron Radiation: Basics, Methods and Applications”, a cura di S. Mobilio, F. Boscherini e C. Meneghini, Springer (2015).

 [18] F. Boscherini, lezione Introduzione ai cristalli, reperibile su campus.unibo.it.

 [19] N.W. Ashcroft and N.D. Mermin, “Solid State Physics”, Saunders, Fort Worth (1976).

 [20] F. Boscherini, lezione Introduzione alla diffrazione di raggi X, reperibile su campus.unibo.it.

 [21] B.E. Warren, X-ray diffraction, Dover, New York, 1990.

 [22] F. Boscherini, Dipense su Pair distribution function analysis of X-ray scattering and small angle x-ray scattering, reperibile su campus.unibo.it.

 [23] S.J.L. Billinge e E.S. Bozin, Pair distribution function technique: principles and methods, in Diffraction at the nanoscale, a cura di A. Guagliardi & N. Masciocchi, Insubria University Press.

 [24] A. Guinier, X-ray diffraction in crystals, imperfect crystals, and amorphous bodies, Dover, New York, 1994.

 [25] F. Borgatti, Spettroscopia di diffusione anelastica di raggi X, dispense disponibili sul sito campus.unibo.it.

Teaching methods

Traditional lectures with powerpoint presentations, a copy of which is available on the web site campus.unibo.it

Assessment methods

Oral exam, in two parts. In the first part, each student will illustrate one of the experimental methods (student's choice), focussing on physics fundamentals, experimantal aspects, characteristics and examples. The second part will deal with the fundamental part of the course: properties of x.rays, synchrotron radiation soursces, interaction of x-rays with matter. The exam can be taken in English.

Teaching tools

Pwerpoint presentations, a copy of which is available for registered students on the web site campus.unibo.it

Links to further information

http://www.physics-astronomy.unibo.it/en/research/areas/condensed-matter-physics/x-ray-and-synchrotron-radiation-physics/index.html

Office hours

See the website of Federico Boscherini

See the website of Francesco Borgatti