16953 - MATEMATICA 1

Anno Accademico 2025/2026

  • Docente: Emanuele Mingione
  • Crediti formativi: 6
  • SSD: MAT/07
  • Lingua di insegnamento: Italiano
  • Modalità didattica: Convenzionale - Lezioni in presenza
  • Campus: Bologna
  • Corso: Laurea in Chimica e chimica dei materiali (cod. 6631)

Conoscenze e abilità da conseguire

Al termine del modulo, lo studente ha le conoscenze di base del calcolo differenziale e integrale per funzioni di una variabile reale. In particolare sa: eseguire applicazioni del calcolo differenziale e integrale per funzioni di una variabile reale; riportare le funzioni su grafico; manipolare funzioni trigonometriche, polinomiali, esponenziali e logaritmiche.

Contenuti

Prerequisiti: Sono richieste le conoscenze della matematica di base appresa alle scuole superiori.

Programma:

Funzioni elementari: polinomi, logaritmi, esponenziali, funzioni trigonometriche e loro inverse.

Limiti e continuità. Definizioni e primi teoremi sui limiti: unicità del limite, teorema del confronto, dei due carabinieri, del valore assoluto. Limiti parziali. Operazioni sui limiti. Forme indeterminate. Limiti notevoli. Definizione di continuità e punti di discontinuità. Teoremi sulle funzioni continue in un intervallo chiuso (teorema di Weierstrass e sue applicazioni).

Derivate e loro applicazioni. Definizione di derivata e significato geometrico. Teoremi fondamentali del calcolo differenziale: di Rolle, Lagrange, De L'Hospital. Massimi, minimi di una funzione. Concavità, convessità e flessi. Asintoti verticali, orizzontali, obliqui. Grafico di una funzione. Sviluppo di Taylor di una funzione

Calcolo integrale e applicazioni. Primitive di una funzione e integrale indefinito: definizioni e prime proprietà. Integrazione per sostituzione e per parti. Integrali definiti e calcolo di aree.

Testi/Bibliografia

- G. Zwirner "Istituzioni di matematiche. Parte I", CEDAM

- G. Zwirner "Esercizi di Analisi Matematica. Parte I", CEDAM

Metodi didattici

Il corso di Matematica 1 si svolge al primo semestre e rappresenta il primo modulo (6 cfu) del corso integrato di Matematica (12 cfu). Il secondo modulo (Matematica 2, 6 cfu)  si svolge al secondo semestre.

Il modulo è strutturato in lezioni frontali in aula, in cui vengono presentati innanzitutto gli aspetti teorici degli argomenti trattati. In particolare, dopo aver introdotto le nozioni di base, vengono enunciati, e in alcuni casi dimostrati, i principali teoremi e risultati nell'ambito del calcolo differenziale e integrale per le funzioni di una variabile reale. Successivamente ampio spazio viene dedicato alle applicazioni delle nozioni e delle tecniche presentate, e alla risoluzione di esercizi.


Modalità di verifica e valutazione dell'apprendimento

La verifica dell'apprendimento per il modulo Matematica 1 avviene attraverso una prova scritta finale di 3 ore e 30 minuti. Nella prova verrà richiesto di risolvere esercizi e rispondere a domande teoriche. Non è ammesso l'uso di: libri, appunti, calcolatrici, supporti informatici.

 

Il voto relativo all'esame dell'intero corso integrato di Matematica (12 cfu) viene calcolato come media pesata sui cfu delle votazioni riportate nella prova di Matematica 1 (6 cfu) e nella prova di Matematica 2 (6 cfu).

Studenti/sse con DSA o disabilità temporanee o permanenti: si raccomanda di contattare per tempo l’Ufficio di Ateneo competente (https://site.unibo.it/studenti-con-disabilita-e-dsa/it). Sarà sua cura proporre agli/lle studenti/sse interessati/e eventuali adattamenti, che dovranno comunque essere sottoposti, con almeno 15 giorni di anticipo, all’approvazione del/della docente, il/la quale ne valuterà l'opportunità anche in relazione agli obiettivi formativi dell’insegnamento.

Strumenti a supporto della didattica

Risorse sulla piattaforma online  Virtuale

Orario di ricevimento

Consulta il sito web di Emanuele Mingione