B5679 - OPTIMAL CONTROL AND REINFORCEMENT LEARNING M

Anno Accademico 2025/2026

Conoscenze e abilità da conseguire

The course focuses on theoretical and numerical methods for the design of trajectories and feedback policies of dynamical systems to optimize a performance index and satisfy given constraints. The presented methods involve the areas of optimal control, reinforcement learning and model predictive control with a strong focus on numerical optimization. At the end of the course students will know how to (i) model optimal control and reinforcement learning problems and characterize optimality conditions, (ii) develop numerical optimization methods from optimal control and reinforcement learning to compute optimal, feasible trajectories and policies, and (iii) design optimization-based predictive control schemes for maneuvering of autonomous systems. To bridge the gap between theory and application, students will apply the studied techniques to trajectory optimization and maneuvering of autonomous systems in a number of application domains including autonomous vehicles, intelligent robots(e.g., aerial robots) and other mechatronic systems.

Contenuti

Guardare pagina in Inglese

Testi/Bibliografia

Guardare pagina in Inglese

Metodi didattici

Guardare pagina in Inglese

Modalità di verifica e valutazione dell'apprendimento

Guardare pagina in Inglese

Strumenti a supporto della didattica

Guardare pagina in Inglese

Orario di ricevimento

Consulta il sito web di Giuseppe Notarstefano