- Docente: Natale Alberto Carrassi
- Crediti formativi: 6
- SSD: FIS/06
- Lingua di insegnamento: Inglese
- Modalità didattica: Convenzionale - Lezioni in presenza
- Campus: Bologna
-
Corso:
Laurea Magistrale in
Science of Climate (cod. 5895)
Valido anche per Laurea Magistrale in Fisica del sistema Terra (cod. 6696)
Laurea Magistrale in Fisica del sistema Terra (cod. 8626)
-
dal 06/10/2025 al 13/01/2026
Conoscenze e abilità da conseguire
The student will learn the foundation of dynamical systems theory for ordinary differential equations, with a focus on chaotic dynamics. The student will acquire knowldge of data assimilation, the term used in geoscience to refer to state estimation theory. Data assimilation is common practice in numerical weather prediction, but its application is becoming widespread in many other areas of climate, atmosphere, ocean and environment modelling. The student will learn the formulation of the problem from a Bayesian perspective and two popular families of Gaussian based approaches, the Kalman-filter/-smoother and the variational methods. The student will be exposed to specific challenges that data assimilation has encountered to deal with high-dimensional chaotic systems, such as the atmosphere and ocean, and the countermeasures that have been taken and which have driven the recent dramatic development of the field. The student will acquire knowldege of machine learning methods and their use in numerical weather predictions and data assimilation.
Contenuti
Outlook on Probability theory and stochastic processes
● The inference problem under a Baysiean framework
○ Representation of the physical and of the observational systems
○ The three estimation problems: Prediction, Filter and Smoother
○ Statistical interpolation
● Linear estimation theory
○ Gauss-Markov Models
○ Observability and controllability
○ Minimum variance formulation - Kalman filter and smoother
○ Maximum a-posteriori formulation - Variational formalism
○ Joint state-parameter estimation
○ Filtering versus smoothing
○ Expectation maximization
● Nonlinear estimation theory: the ensemble Kalman filter and 4DVar
○ Minimum Variance approaches:
● The extended Kalman filter
● The ensemble Kalman filter and smoother
● Stochastic and Deterministic EnKF
● Filter stability and divergence
● Making the EnKF works: Inflation and localization
● Nonlinear least squares
○ Gauss-Newton
○ Adjoint-based minimization
○ 3D- and 4D-Var
○ Hybrid ensemble-variational techniques and other iterative methods
● Fully Bayesian estimation: Particle filters
● Data assimilation and Chaos
● Data assimilation and machine learning similarities and key differences
○ Estimating a model using ML
○ Estimating a model using DA
● Combining DA and ML
Testi/Bibliografia
Gli appunti delle lezioni di ciascun modulo (in inglese) saranno disponibili online.
Gli appunti delle lezioni contengono anche un'ampia bibliografia.
Letture consigliate:
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcc.535
https://epubs.siam.org/doi/book/10.1137/1.9781611974546
Metodi didattici
Le lezioni si svolgono di persona in aula, utilizzando sia diapositive che la lavagna.
Il corso comprende fino a 3 seminari tenuti da scienziati che lavorano sull'assimilazione dei dati o su argomenti correlati.
Modalità di verifica e valutazione dell'apprendimento
La valutazione finale avverrà sotto forma di esame orale (~45 minuti) in cui allo studente verranno poste alcune domande volte a verificare il suo grado di comprensione dei concetti, dei metodi e dei problemi spiegati nel corso.
Strumenti a supporto della didattica
Lavagna, diapositive proiettate e simulazioni al computer.
Studenti/sse con DSA o disabilità temporanee o permanenti: si raccomanda di contattare per tempo l’ufficio di Ateneo responsabile (https://site.unibo.it/studenti-con-disabilita-e-dsa/it): sarà sua cura proporre agli/lle studenti/sse interessati/e eventuali adattamenti, che dovranno comunque essere sottoposti, con un anticipo di 15 giorni, all’approvazione del/della docente, che ne valuterà l'opportunità anche in relazione agli obiettivi formativi dell'insegnamento.
Orario di ricevimento
Consulta il sito web di Natale Alberto Carrassi
SDGs

L'insegnamento contribuisce al perseguimento degli Obiettivi di Sviluppo Sostenibile dell'Agenda 2030 dell'ONU.