- Docente: Alberto Lanconelli
- Crediti formativi: 6
- SSD: MAT/06
- Lingua di insegnamento: Inglese
- Modalità didattica: Convenzionale - Lezioni in presenza
- Campus: Bologna
- Corso: Laurea in Scienze statistiche (cod. 8873)
-
dal 06/11/2023 al 14/12/2023
Conoscenze e abilità da conseguire
By the end of the course module the student should know the basic tools of probability calculus, with a special focus on their role in the statistical analysis. In particular, the student should be able to: - compute the probability of events, by using the axioms and the fundamental theorems of probability calculus - identify the main discrete and continuous random variables and compute their expected values and variances - analytically treat univariate and bivarate random variables.
Contenuti
- Probability spaces and Kolmogorov axioms
- Conditional probability, Law of Total Probability and Bayes' formula
- Independent events
- Random variables and distribution functions, discrete and continuous random variables, expected value, variance and covariance
- Discrete models: Bernoulli, Binomial, Hypergeometric, Poisson, Geometric
- Continuous models: Uniform, Gaussian, Gamma, Student, Fisher.
- Law of Large Numbers and applications
- Central Limit Theorem and applications
Testi/Bibliografia
Alberto Lanconelli, Introduction to Probability Theory (2023) ISBN-13: 979-8850457037
Metodi didattici
Regular lectures and tutorials
Modalità di verifica e valutazione dell'apprendimento
One-hour written exam, articulated in a series of 2 exercises each with a maximum grade of 15 points, followed by an oral examination. The written test is aimed at assessing the student's ability to use the definitions, properties and theorems of probability theory in solving theoretical exercises. Every exercise attains to elements of the syllabus covered during the course lectures. In case of online exam, this will be supported by the softwares Teams, Zoom and EOL (https://eol.unibo.it/)
Strumenti a supporto della didattica
Exercises with solutions
Orario di ricevimento
Consulta il sito web di Alberto Lanconelli
SDGs


L'insegnamento contribuisce al perseguimento degli Obiettivi di Sviluppo Sostenibile dell'Agenda 2030 dell'ONU.