- Docente: Daniele Vigo
- Crediti formativi: 6
- SSD: MAT/09
- Lingua di insegnamento: Inglese
- Modalità didattica: Convenzionale - Lezioni in presenza
- Campus: Bologna
-
Corso:
Laurea Magistrale in
Matematica (cod. 5827)
Valido anche per Laurea Magistrale in Matematica (cod. 8208)
Conoscenze e abilità da conseguire
At the end of the course the student knows the main theoretical and algorithmic methods of mathematical programming for the solution of optimization problems and decision support; is able to analyse an optimization problem and develop the appropriate mathematical model for its resolution. The course includes the illustration of real world applications and laboratory experiences which shows how to implement an algorithm based on a mathematical programming model and how to use the main available solvers.
Contenuti
Introduction to Mathematical Programming (Mathematical Optimization). Linear Programming and Integer Linear Programming models. Simplex Algorithm. Duality Theory, Dual Simplex Algorithm. Methods for integer problems: Branch & Bound, Branch & Cut, Column Generation. Use of commercial and public domain solvers.
Testi/Bibliografia
Matteo Fischetti Introduction to Mathematical Optimization, Self Published in Amazon
Lecture notes and slides from the teacher
Metodi didattici
Frontal lectures and exercise sessions
Modalità di verifica e valutazione dell'apprendimento
Oral Exam with exercises and theoretical questions
Strumenti a supporto della didattica
Lecture notes and slides from the teacher
Orario di ricevimento
Consulta il sito web di Daniele Vigo
SDGs




L'insegnamento contribuisce al perseguimento degli Obiettivi di Sviluppo Sostenibile dell'Agenda 2030 dell'ONU.