28172 - BIOSTATISTICS

Anno Accademico 2025/2026

  • Docente: Cinzia Viroli
  • Crediti formativi: 6
  • SSD: SECS-S/01
  • Lingua di insegnamento: Inglese
  • Modalità didattica: Convenzionale - Lezioni in presenza
  • Campus: Cesena
  • Corso: Laurea Magistrale in Biomedical engineering (cod. 6705)

Conoscenze e abilità da conseguire

Al termine del corso, lo studente conosce le tecniche statistiche applicate. Oltre ad acquisire nozioni elementari di statistica descrittiva, lo studente comprende la logica dell’inferenza statistica, sapendo applicare i test statistici più diffusi nella ricerca e nella professione. Sa inoltre effettuare analisi statistiche con programmi dedicati, e sa interpretare l’output nel contesto del fenomeno o dell’esperimento analizzato.

Contenuti

The course introduces fundamental and intermediate statistical methods with applications to biomedical engineering. Topics include:

  • Types of biomedical data and measurement scales

  • Experimental vs observational study designs, bias and confounding

  • Descriptive statistics and graphical data exploration

  • Probability, diagnostic test evaluation, and key probability distributions

  • Statistical inference: confidence intervals and hypothesis testing

  • Contingency tables, odds ratios, relative risk, and Simpson’s paradox

  • Linear and multiple regression

  • Logistic regression for binary outcomes

  • Analysis of variance (ANOVA)

  • Survival analysis and nonparametric methods

  • Introduction to multivariate techniques: Principal Component Analysis (PCA), Factor Analysis (FA), and high-dimensional data contexts

Real biomedical datasets and case studies will be used throughout. The course emphasizes applied data analysis, interpretation, and statistical reasoning, with all analyses conducted using the R statistical software

Testi/Bibliografia

  • Wayne W. Daniel, Chad L. Cross, Biostatistics: A Foundation for Analysis in the Health Sciences, 11th Edition, Wiley.
  • Ronald N. Forthofer, Eun Sul Lee, Mike Hernandez, Biostatistics: A Guide to Design, Analysis, and Discovery, 2nd Edition, Academic Press.
  • Supplementary materials (for PCA, FA, and high-dimensional data) provided during the course.

Metodi didattici

The course will combine:

  • Lectures to introduce statistical theory and biomedical context

  • Case-based discussions to explore applied problems and experimental design

  • Hands-on coding sessions using R for statistical analysis

Modalità di verifica e valutazione dell'apprendimento

Assessment will consist in a final written exam with different exercises assessing theoretical understanding, practical analysis and interpretation skills.

Strumenti a supporto della didattica

  • Lecture slides and reading materials (provided via course platform)
  • Statistical software: R and RStudio

Orario di ricevimento

Consulta il sito web di Cinzia Viroli