- Docente: Paolo Seri
- Crediti formativi: 6
- SSD: ING-IND/33
- Lingua di insegnamento: Italiano
- Modalità didattica: Convenzionale - Lezioni in presenza
- Campus: Bologna
- Corso: Laurea in Ingegneria dell'energia elettrica (cod. 5822)
-
dal 16/09/2024 al 17/12/2024
Conoscenze e abilità da conseguire
Il corso intende fornire conoscenze nei settori del calcolo delle probabilità, della statistica e dell'affidabilità dei sistemi elettrici, utilizzando il metodo sperimentale e l'analisi statistica.
Contenuti
1. Definizione di evento. Definizioni di probabilità: approccio classico (equiprobabilità), delle frequenze e soggettivo (De Finetti). Approccio assiomatico, calcolo della probabilità di eventi.
2. Probabilità condizionata ed indipendenza stocastica. Teoremi di Bayes e della probabilità totale.
3. Variabili aleatorie discrete e continue: definizione, funzione di distribuzione cumulativa, densità di probabilità. Leggi probabilistiche di uso comune (uniforme, normale, lognormale, esponenziale, Weibull).
4. Variabili aleatorie doppie e multiple: definizione, funzione di distribuzione cumulativa, densità di probabilità. Metodo di Monte Carlo
5. Momenti: valore atteso, varianza (lemma di Tchebycheff), skewness e kurtosis. Covarianza e coefficiente di correlazione.
6. Statistica non parametrica: momenti empirici, stima empirica della funzione di distribuzione, box plot, istogrammi, stima empirica dei momenti.
7. Campione casuale e statistiche campionarie. Distribuzione della media aritmetica dei dati, della frequenza, della varianza (leggi di t di Student e chi quadrato), della variabile pivotale del valore atteso e statistiche ordinate della distribuzione uniforme (legge beta). Proprietà degli stimatori: correttezza r correttezza asintotica, efficienza ed efficienza relativa, consistenza.
8. Stime puntuali: metodo di massima verosimiglianza, dei momenti e carte probabilistiche.
9. Intervalli di confidenza: variabile pivotale, intervallo di confidenza del valore atteso, della probabilità e della varianza. Intervalli bilaterali ed unilaterali.
10. Regressione lineare: calcolo dei parametri mediante il metodo dei minimi quadrati e della massima verosimiglianza, modelli lineari nei parametri. Regressione multivariata e stima della bontò del modello (cenni).
11. Affidabilità: funzioni e parametri affidabilistici di un singolo dispositivo. Affidabilità combinatoria: sistemi serie, parallelo, misti, metodo dell'elemento chiave e degli stati, ridondanza parziale e sistemi riparabili.
Testi/Bibliografia
Lucidi delle lezioni
M. Spiegel, J. Schiller, Alu Srinivasan, Probabilità e statistica
Richard E. Brown, Electric Power Distribution Reliability
Metodi didattici
Lezioni frontali in presenza, esercitazioni in ambiente MATLAB.
Modalità di verifica e valutazione dell'apprendimento
Esame online con risposta a scelta multipla.
Esame orale.Strumenti a supporto della didattica
Presentazioni power point.
Orario di ricevimento
Consulta il sito web di Paolo Seri