78853 - EPIDEMIOLOGIA AMBIENTALE

Anno Accademico 2024/2025

  • Docente: Massimo Ventrucci
  • Crediti formativi: 8
  • SSD: SECS-S/01
  • Lingua di insegnamento: Italiano
  • Moduli: Massimo Ventrucci (Modulo 1) Andrea Ranzi (Modulo 2)
  • Modalità didattica: Convenzionale - Lezioni in presenza (Modulo 1) Convenzionale - Lezioni in presenza (Modulo 2)
  • Campus: Bologna
  • Corso: Laurea in Scienze statistiche (cod. 8873)

Conoscenze e abilità da conseguire

Al termine del corso lo studente è in grado di utilizzare strumenti statistici adeguati per lo studio delle relazioni fra lo stato di salute delle popolazioni e le loro modalità di esposizione ad agenti inquinanti. In particolare, lo studente è in grado di: - descrivere e modellare dati geostatistici e dati areali; - effettuare previsioni spaziali degli agenti inquinanti, tipicamente disponibili sotto forma di dati geostatistici; - produrre mappe di mortalità affidabili per cause di morte rare in piccole aree; - studiare la relazione tra qualità dell’ambiente e salute attraverso opportuni modelli di regressione spaziale; - utilizzare pacchetti dedicati all’analisi spaziale implementati nel software statistico R.

Contenuti

Modulo I

La statistica nell'epidemiologia spaziale. Dati spaziali e loro formato. Mappe di rischi areali, tassi e proporzioni.

Modelli di regressione per dati areali. Tassi areali standardizzati (Standardized Mortality Ratio), metodo di standardizzazione interna. Modelli per il disease mapping: medie locali, Empirical Bayes smoothing. Metodi per identificare global clustering con l'uso dell'indice di Moran.

Modelli per dati geostatistici. Processi stocastici spaziali e condizioni di regolarità. Il variogramma e la covarianza spaziale. I modelli teorici di correlazione spaziale. La previsione spaziale.

Cenni a modelli di regressione ecologica per lo studio della relazione ambiente salute. 

 

Modulo II

Gli inquinanti atmosferici. Metodi di correlazione per le serie temporali degli inquinanti.

Gli effetti sulla salute dell'inquinamento atmosferico. Revisione della letteratura. Effetti a breve termine e a lungo termine. Le relazioni dose risposta. Principali effetti sulla salute a lungo termine dell'inquinamento atmosferico e della presenza di impianti di gestione di rifiuti solidi urbani.

La valutazione della esposizione della popolazione ad inquinanti atmosferici. Esposizioni acute e croniche. Metodi diretti e indiretti. L'uso della modellistica per la valutazione dell’esposizione.

La valutazione di impatto sulla salute. Dal rischio alla quantificazione degli impatti. Frazione attribuibile. Lo scenario controfattuale. Gli indicatori di impatto (AC, YLL, YLD, DALYs). Le funzioni esposizione-risposta per il particolato in relazione alla mortalità. La stima degli impatti.

Testi/Bibliografia

Per il modulo I si consigliano i seguenti testi (le parti di libro affrontate nel corso verranno indicate a lezione):
  • Applied Spatial Statistics for Public Health Data (2004). Lance A. Waller, Carol A. Gotway. Wiley
  • Peter Diggle, Paulo Ribeiro (2007). "Model-based Geostatistics". Springer

Per il modulo II si consigliano i seguenti testi (le parti di libro affrontate nel corso verranno indicate a lezione):

 

Metodi didattici

Lezioni frontali e lezioni in laboratorio con l'uso del software R.

In considerazione della tipologia di attività e dei metodi didattici adottati, la frequenza di questa attività formativa richiede la preventiva partecipazione di tutti gli studenti ai moduli 1 e 2 di formazione sulla sicurezza nei luoghi di studio, [https://elearning-sicurezza.unibo.it/] in modalità e-learning.

Modalità di verifica e valutazione dell'apprendimento

L'esame consiste di due prove indipendenti relative ai moduli 1 e 2.

Per il modulo 1, gli studenti verranno valutati sulla base di un take-home assignment da svolgere con RStudio e di una esame scritto/pratico svolto in laboratorio attraverso EOL. La prova con EOL si svolge nella data di appello del parziale (4 Aprile) e consiste di domande aperte e a risposta multipla (alcune delle aperte richiedono l'uso di Rstudio). Il take-home assignment verrà consegnato tramite virtuale dal docente prima della fine del modulo I e dovrà essere consegnato via virtuale entro una data stabilita (in genere entro la data di appello del parziale).

Per il modulo 2, gli studenti verranno valutati sulla base di un take-home assignment da svolgere con Excel. Il take-home assignment verrà consegnato tramite virtuale dal docente prima della fine del modulo II e dovrà essere consegnato via virtuale entro una data stabilita (in genere entro la data del primo appello estivo, i.e. 29 Maggio).

Info riguardo i take-home assignment di entrambi i moduli. Il take-home assignment consiste in un elaborato scritto che riporta le analisi riguardanti un caso studio. Il docente fornirà il materiale necessario per lo svolgimento della prova: dataset, articoli di riferimento, una traccia con gli obiettivi e le domande di ricerca e uno schema della struttura dell'elaborato richiesto. L'elaborato viene consegnato dal docente tramite moodle (piattaforma 'virtuale') e va consegnato dallo studente sempre via moodle. Maggiori informazioni su lunghezza elaborato, formato di consegna, tempi e modalità di consegna del lavoro verranno fornite durante il corso.

IMPORTANTE per gli studenti che intendono iscriversi ad un qualsiasi appello successivo al primo appello estivo (29 Maggio). Siete pregati di mandare una mail a entrambi i docenti con almeno 15 giorni di anticipo rispetto alla data di appello per richiedere la consegna del take-home assignment. I docenti invieranno i take-home assignment dei rispettivi moduli e comunicheranno i tempi di consegna; in ogni caso, la consegna dell'elaborato andrà effettuata entro la data di appello.

 

VALUTAZIONE

Il processo di valutazione mira a verificare sia le conoscenze (sapere descrivere i concetti e i metodi di analisi visti a lezione) che le abilità (sapere mettere in pratica gli strumenti di analisi e interpretare correttamente i risultati).

Il voto complessivo è la sintesi del giudizio dei docenti rispetto a quattro voci: 1) coerenza delle analisi svolte rispetto alle domande riportate nella prova pratica o nel take-home assignment; 2) chiarezza nel commentare e riportare le analisi svolte; 3) correttezza tecnica delle analisi svolte; 4) capacità di interpretare correttamente il significato delle analisi svolte.

Per superare l'esame occorre ottenere un voto >=18 in entrambi i moduli. Il voto finale è la media dei voti ottenuti nei due moduli.

Strumenti a supporto della didattica

Per le lezioni frontali useremo materiali come slides e articoli e per quelle di laboratorio useremo script di R e datasets. Tutti i materiali verranno condivisi tramite la piattaforma moodle, accessibile alla pagina https://virtuale.unibo.it. Si consiglia gli studenti di iscriversi alla pagina del corso su virtuale. Si consiglia inoltre agli studenti che ne sono dotati di portare a lezione il loro laptop con installati software: R (http://www.r-project.org/) e RStudio (https://rstudio.com/).

 

 

Orario di ricevimento

Consulta il sito web di Massimo Ventrucci

Consulta il sito web di Andrea Ranzi

SDGs

Salute e benessere

L'insegnamento contribuisce al perseguimento degli Obiettivi di Sviluppo Sostenibile dell'Agenda 2030 dell'ONU.