- Docente: Gastone Castellani
- Crediti formativi: 6
- SSD: FIS/07
- Lingua di insegnamento: Inglese
- Moduli: Gastone Castellani (Modulo 1) Daniel Remondini (Modulo 2)
- Modalità didattica: Convenzionale - Lezioni in presenza (Modulo 1) Convenzionale - Lezioni in presenza (Modulo 2)
- Campus: Bologna
- Corso: Laurea Magistrale in Physics (cod. 9245)
Conoscenze e abilità da conseguire
At the end of this course the student will learn the principles and commonly used paradigms and techniques of pattern recognition. In particular he/she will be able to: - explain and compare a variety of pattern classification techniques, - apply performance evaluation methods for pattern recognition, - apply pattern recognition techniques to real-world problems in the Applied Physics field, - implement simple pattern classifiers, - demonstrate successful applications to process and analyze data (e.g. images), and make automatic decisions based on extracted feature information.
Contenuti
24 hours (3 CFU) Castellani
Introduction Probability Theory, Probability densities, Expectations and covariances, Bayesian probabilities, Bayesian curve fitting, Model Selection, the Curse of Dimensionality, Statistical Inference and decision, loss functions for regression
Probability Distributions Binary and Multinomial Variables, Beta, Dirichlet and Gaussian Distribution, Gaussian Mixtures, the Exponential Family, maximum likelihood and sufficient statistics, Conjugate priors, Noninformative priors, Nonparametric Methods Inference and association test
Linear models for Regression and Classification Linear Basis Function Models, Bias-Variance Decomposition, Bayesian Linear Regression, Bayesian Model Comparison, Discriminant Functions, Probabilistic Generative and Discriminative Models
Neural Networks Learning rules, Hebbian,BCM and Hopfield model, Feed-forward Network Functions, Network Training, Error Backpropagation, Regularization,
Introduction to Kernel methods and Graphical models
24 hours (3 CFU) Remondini
Feature extraction & optimal projection:
Preprocessing: data regularization and normalization.
Principal Component Analysis, Singular Value Decomposition, Factor Analysis, Multi-Dimensional Scaling, ISOMAP, t-SNE, UMAP.
Relation to cost function maximization and eigenvalue problem (Rayleigh quotient).
Supervised classification:
Discriminant Analysis, Support Vector Machine, Random Forest.
Robust analysis procedures: crossvalidation.
Unsupervised clustering:
Hierarchical, k-means, spectral clustering techniques, DBscan.
Deep Learning:
DL Parameters and hyperparameters; training procedures.
Feedforward Neural Networks. Convolutional Neural Networks. Recurrent networks. LSTM, biLSTM & Transformer networks. Applications to imaging and NLP.
Testi/Bibliografia
Bishop - Machine learning and pattern recognition
Tibshirani Tusher - Methods of statistical learning
Metodi didattici
Slides and blackboard
Modalità di verifica e valutazione dell'apprendimento
roject, literature study and questions.
Strumenti a supporto della didattica
Programming environment and server connection
Orario di ricevimento
Consulta il sito web di Gastone Castellani
Consulta il sito web di Daniel Remondini
SDGs
L'insegnamento contribuisce al perseguimento degli Obiettivi di Sviluppo Sostenibile dell'Agenda 2030 dell'ONU.