87195 - LAB OF BIG DATA ARCHITECTURES M

Scheda insegnamento

SDGs

L'insegnamento contribuisce al perseguimento degli Obiettivi di Sviluppo Sostenibile dell'Agenda 2030 dell'ONU.

Imprese innovazione e infrastrutture

Anno Accademico 2022/2023

Conoscenze e abilità da conseguire

The Lab of Big Data architectures extends and integrates what learnt by the student in the course “statistics and architectures for big data processing” with a more in depth and practical knowledge of the big-data technologies and architectures. The students will learn how to design a big data system, the key concepts and differentiators behind state-of-the-art technologies and architectures, and how to use it effectively. This will be done by a series of practical exercises with interactive explanations, where students will learn by solving practical problems and examples.

Contenuti

The course content follows the Brendan Gregg approach to system performance monitoring and optimization and it is intended to give to the student a practical knowledge on monitoring and optimizing the system performance of Linux O.S. based big-data/cloud/HPC computing systems.

1. Working with a big data cluster: Practical experience on connecting to Monte Cimone Cluster; Installing and executing a simple benchmark (Stream, HPL benchamarks.) with Spack.

2. System Performance and O.S. basics: The Utilization Saturation and Errors (USE) Method; Linux O.S. basics.

3. Observability Tools: Linux Perf, Ftrace, eBPF, performance counters, flame graph, roof line

4. CPU profiling: exercises

5. MEM profiling: exercises

6. File system and Disk profiling: exercises

7. Network profiling: exercises

Testi/Bibliografia

Systems Performance: Enterprise and the Cloud, 2nd Edition (2020)

Brendan Gregg

Metodi didattici

The class with consists of the completion of a set of practical tutorials and assignments conducted on the own laptop and on the remote Monte Cimone cluster.

Modalità di verifica e valutazione dell'apprendimento

Based on student's reports on the application of the studied system profiling methods seen in the class to a selected application/benchmark selected by the student.

Strumenti a supporto della didattica

The course will be conducted on the Monte Cimone cluster. 

In considerazione della tipologia di attività e dei metodi didattici adottati, la frequenza di questa attività formativa richiede la preventiva partecipazione di tutti gli studenti ai Moduli 1 e 2 di formazione sulla sicurezza nei luoghi di studio, in modalità e-learning.

Orario di ricevimento

Consulta il sito web di Andrea Bartolini