Scheda insegnamento
-
Docente Riccardo Rovatti
-
Moduli Riccardo Rovatti (Modulo 1)
Mauro Mangia (Modulo 2)
-
Crediti formativi 6
-
SSD ING-INF/01
-
Lingua di insegnamento Italiano
-
Campus di Bologna
-
Corso Laurea Magistrale in Ingegneria elettronica (cod. 0934)
Valido anche per Laurea Magistrale in Advanced automotive electronic engineering (cod. 9238) -
Orario delle lezioni (Modulo 1) dal 23/02/2022 al 08/06/2022
Orario delle lezioni (Modulo 2) dal 21/02/2022 al 06/06/2022
Anno Accademico 2021/2022
Conoscenze e abilità da conseguire
The course aims to give students the appropriate techniques for the acquisition and processing of real world data and the implementation of efficient and robust signal processing structures. Knowledge about the modern theory and practice of sampling from an engineering perspective, and classical and modern signal processing tools will be acquired.
Contenuti
Mathematical tools:
- euclidean vector spaces of functions and random variables
- operators
- Optimization problme, Lagrange's multipliers
- pseudo-differentiation of functioncs of complex variables
Basics of probability and statistics
- random variable and their characterization (PDF, CDF, expectation, moments, characteristic function)
- covariance and linear prediction, orthogonality principle
- independence and unpredictability
- stochastic processes and their charcterization (joint probabilities, correlation/covariance functions, projections)
Processing of stochastic quantities
- linear algebraic processing (importance of pre-images, pseudo-inversion)
- linear dynamics processing (universal characterization of linear filters)
- scalar quantization of random variables (conditions ofr uniformity and incorrelation of quantization error)
Gaussian vectors and processes
- definitions and properties
- White Gaussian Noise
Power spectrum
- definition for continuous-time and discrete-time processes
- Wiener-Kinchine theorem
- estimation in general and its application to power spectrum
- periodogoram and modified periodogram
- minimum-variance estimation
- regular and predictable processes
- Wold theorem
- maximum-entropy estimator
Orario di ricevimento
Consulta il sito web di Riccardo Rovatti
Consulta il sito web di Mauro Mangia