74790 - MATEMATICA CON ESERCITAZIONI

Scheda insegnamento

Anno Accademico 2019/2020

Conoscenze e abilità da conseguire

Al termine del corso, lo studente possiede le conoscenze di base del calcolo differenziale e integrale per funzioni di una variabile reale, del calcolo vettoriale e dell'algebra lineare, dei primi elementi del calcolo per funzioni di più variabili, dei numeri complessi, conosce i metodi più elementari per la soluzione di equazioni differenziali. In particolare, lo studente è in grado di rappresentare dati o funzioni in forma grafica,eseguire applicazioni del calcolo differenziale e integrale per funzioni di una o più variabili reali, eseguire operazioni con vettori e matrici e sa risolvere sistemi di equazioni lineari.

Programma/Contenuti

Pre-requisiti

  • Teoria elementare degli insiemi.
  • Algebra dei numeri reali.
  • Equazioni e disequazioni algebriche.
  • Funzioni elementari: potenze, radici, esponenziali, logaritmi, funzioni circolari.
  • Geometria analitica nel piano euclideo. 

 

Programma

Il corso e' diviso in tre moduli dettate dal Prof. I. Rivalta (Modulo A), Prof. M. Garavelli (Modulo B-1) e dal Dr. L. Muccioli (Modulo B-2). Le lezioni del Modulo A verranno tenute in parallelo a quelle dei moduli B-1 e B-2, che invece saranno dettate in sequenza. Ogni modulo prevede esercitazioni in aula.

 

Modulo A (6.5 CFU):

(Oggetto prima prova intermedia) Numeri complessi, formula di Eulero, vettori e matrici, trasformazioni lineari, autovalori ed autovettori

(Oggetto seconda prova intermedia) minimi quadrati, regressione lineare, approssimazione di funzioni, serie di Taylor, funzioni scalari e vettoriali di piu' variabili e derivate parziali

(Oggetto terza prova intermedia) operatori gradiente divergenza rotore e Laplaciano, matrice Hessiana, massimi e minimi di funzioni di piu' variabili, basi ortogonali di funzioni, serie e trasformata di Fourier.

 

Modulo B-1 (2 CFU):

(Oggetto prima prova intermedia) Ripasso funzioni elementari, polinomi, logaritmi, esponenziali, funzioni trigonometriche e loro inverse, limiti e continuita'

Modulo B-2 (4.5 CFU):

(Oggetto seconda  prova intermedia) Derivate, teoremi di Rolle Lagrange e de l'Hopital, studio di funzione

(Oggetto terza prova intermedia) Integrali, integrazione per parti e per sostituzione, integrali definiti, integrali multipli, integrali di linea, equazioni differenziali ordinarie (ODE) lineari di primo ordine, a variabili separabili, e lineari di ordine superiore con coefficienti costanti.

Testi/Bibliografia

Saranno pubblicate sul sistema IOL le presentazioni e le note delle lezioni salvate con la lavagna elettronica.

Testi di riferimento:

Claudio Canuto, Anita Tabacco, ``Analisi Matematica I'', 4a edizione (Springer--Verlag, Milano 2014) --- ISBN13:978-88-470-5722-7.


Tom M. Apostol, ``Calcolo'', volume II ``Geometria'', (Bollati Boringhieri, Torino 1979) --- ISBN13:978-88-339-5034-1.

Metodi didattici

Moduli A e B-1

Lezioni frontali utilizzando lavagna elettronica con videoproiettore, piattaforme digitali per verifiche apprendimento. Esercitazioni in classe.

 

Modulo B-2

Lezioni frontali utilizzando slides con videoproiettore. Esercitazioni in classe.


Modalità di verifica dell'apprendimento

Per le prove d'esame (incluse le prove intermedie) è necessaria l'iscrizione tramite AlmaEsami, nel rispetto delle scadenze previste.

Tutte le prove sono scritte, e non sono previste prove orali. La verifica consiste in una collezione di esercizi (da 4 a 6) sugli argomenti dei moduli (per le prove parziali, prima prova: argomenti moduli A e B-1; seconda e terza prova: moduli A e B-2; come indicato nella sezione "Programma/Contenuti") con valutazione in trentesimi e peso di ogni esercizio indicato esplicitamente. Le prove mirano alla valutazione della comprensione dei concetti e alle capacità fondamentali di calcolo. Del materiale di supporto per la soluzione degli esercizi viene fornito in sede d'esame e l'uso di strumenti di calcolo è permesso. Per le prove intermedie: il voto complessivo si ottiene attraverso la media delle tre prove parziali; le valutazioni di ogni prova parziale non devono essere inferiori ai 16/30 per essere prese in considerazione. Alternativamente, dopo la fine del corso gli studenti possono sostenere un esame scritto completo sugli argomenti dei tre moduli.

Strumenti a supporto della didattica

Lavagna elettronica con videoproiettore e proiezione di slides. Piattaforme digitali per verifiche delle esercitazioni e dell'apprendimento.

Gli studenti con DSA o Disabilità possono contattare il Servizio Studenti con Disabilità e DSA dell’Università di Bologna, il referente del Dipartimento, o il docente del corso per concordare le modalità più adatte per consultare il materiale didattico e accedere alle aule per le lezioni frontali.

 

Orario di ricevimento

Consulta il sito web di Ivan Rivalta

Consulta il sito web di Luca Muccioli

Consulta il sito web di Marco Garavelli