12511 - ANALISI DELLE SERIE STORICHE

Scheda insegnamento

Anno Accademico 2018/2019

Conoscenze e abilità da conseguire

Il corso si pone come obiettivo quello di fornire allo studente i fondamenti metodologici di alcune delle principali tecniche statistiche per l’analisi di dati caratterizzati da una particolare struttura di dipendenza propria delle osservazioni ripetute nel tempo. Il corso fornisce allo studente strumenti base per l’analisi di serie storiche univariate, sia a fini previsivi sia interpretativi di fenomeni economici e sociali. Al termine del corso, lo studente sarà in grado di applicare quanto appreso a casi reali, avendo sviluppato un’adeguata capacità critica per quanto riguarda la scelta degli strumenti e l’interpretazione dei risultati. Lo studente sarà altresì in grado di affrontare corsi avanzati di analisi di serie storiche

Programma/Contenuti

Analisi delle serie storiche

Definizione intuitiva e formale di serie storica.

Processi stocastici - Definizione, caratterizzazione e proprietà: stazionarietà, invertibilità ed ergodicità. Processi lineari e teorema di Wold. Operatore ritardo, operatore differenza, polinomi nell'operatore ritardo. Rappresentazione AutoRegressiva (AR) di ordine infinito e Media Mobile (MA) di ordine infinito di processi stocastici lineari. Funzioni di autocovarianza e autocorrelazione globale e parziale.

Modellistica - Approssimazione finita di processi AR e MA di ordine infinito: AR(p), MA(q), ARMA(p,q). Modelli ARIMA(p,d,q) per processi lineari non stazionari omogenei. Modelli ARIMA(p,d,q)(P,D,Q) stagionali per processi lineari stagionali non stazionari omogenei. Procedura Box-Jenkins per identificazione, stima e verifica di un modello ARIMA stagionale. Analisi di serie storiche reali.

Analisi di dati panel

Introduzione ai dati panel attraverso alcuni esempi. Perché dovremmo utilizzare dati panel? Vantaggi e limitazioni.

Eteroschedasticità e correlazione seriale nei modelli con componente di errore.

Modello a componente di errore ad una via. Introduzione. Modello con effetti fissi e modello ad effetti casuali. Stima di massima verosimiglianza. Esempi ed applicazioni.

Modello a componente di errore a due vie. Introduzione. Modello con effetti fissi e modello ad effetti casuali. Stima di massima verosimiglianza. Esempi ed applicazioni.

Verifica di ipotesi in presenza di dati panel. Test per poolability dei dati. I test per effetti individuali e temporali. Test di Hausman.

Modelli dinamici per dati panel. Introduzione. Studio delle proprietà e delle limitazioni dei principali stimatori sia in presenza di effetti fissi che casuali.

Testi/Bibliografia

Bee Dagum E. Analisi delle serie storiche. Modellistica, previsione e scomposizione. Springer-Verlag Italia, Milano, 2001.

Baltagi B.H., Econometric analysis of panel data. Wiley, 2013.

Metodi didattici

Lezioni teoriche in aula, nel corso delle quali saranno illustrati gli aspetti metodologici delle diverse tecniche, ed esercitazioni in laboratorio, durante le quali verranno presentati e discussi esempi di analisi di dati reali realizzate mediante diversi software.

Modalità di verifica dell'apprendimento

L'accertamento dell'apprendimento si articola in una prova scritta con domande aperte su tutti gli argomenti affrontati durante il corso. In particolare, la prova si articola in otto quesiti, di cui sei relativi all'analisi di serie storiche e due relativi all'analisi di dati panel. Tali quesiti consistono in domande aperte di teoria, esercizi e analisi su dati reali.

Strumenti a supporto della didattica

Videoproiezione di lucidi.

Il materiale proiettato è reperibile presso AMS Campus il servizio di deposito istituzionale dei materiali didattici, al seguente indirizzo: campus.unibo.it.

Orario di ricevimento

Consulta il sito web di Silvia Bianconcini