29515 - STATISTICA AVANZATA

Scheda insegnamento

Anno Accademico 2018/2019

Conoscenze e abilità da conseguire

Al termine del corso lo studente conosce i metodi principali dell'inferenza statistica, in contesto frequentista e bayesiano. In particolare lo studente è in grado di: - applicare le metodologie opportune per la stima e la verifica di ipotesi di un modello statistico adeguato alla natura dei dati; - utilizzare software statistici adeguati per gli studi applicati.

Programma/Contenuti

Inferenza Statistica Classica

Introduzione all'inferenza statistica classica.

Modelli statistici parametrici. La funzione di verosimiglianza. La famiglia esponenziale. Statistiche e momenti campionari.

Teoria della stima

Principio di sufficienza. Principio di verosimiglianza. Proprietà finite e asintotiche degli stimatori di massima verosimiglianza.

Verifica di ipotesi. 

Introduzione alla verifica di ipotesi. Interpretazione frequentista del p-value. Test uniformemente più potenti. Il test del rapporto di verosimiglianza. Verifica di ipotesi su media, varianza, proporzione, differenza tra medie.

Test non parametrici: test di Kolmogorov-Smirnov, indipendenza in tabelle di contingenza.

Stima intervallare.

Relazioni fra verifica di ipotesi e stima intervallare.Costruzione di intervalli di confidenza: interpretazione frequentista del livello di confidenza. Intervalli di confidenza asintotici per la media. Intervallo di confidenza per la varianza di una popolazione Normale.

Il modello di regressione lineare multiplo.

Inferenza Statistica Bayesiana

Introduzione all'inferenza bayesiana: principio di verosimiglianza; distribuzioni a priori e a posteriori. Sintesi della distribuzione a posteriori. Alcuni esempi di inferenza sui parametri dei più comuni modelli univariati. 

 Distribuzioni a priori naturali coniugate. Le distribuzioni a priori non informative; distribuzione a priori di riferimento. Le distribuzioni a priori improprie e la regola di Jeffreys.

Stima per intervalli. Verifica di ipotesi.

Cenni sui metodi computazionali per l'inferenza bayesiana. Metodi Markov chain Monte Carlo.

Funzioni di perdita e perdita attesa finale.

Modelli gerarchici.

Analisi di casi di studio in ambito finanziario e assicurativo.

 

Testi/Bibliografia

Piccolo D. Statistica. Il Mulino, 2010.

Azzalini A. Inferenza Statistica. Una presentazione basata sul concetto di verosimiglianza. Springer, 2001.

Lee P.M., Bayesian Statistics: an Introduction, Arnold, 2004.

Ulteriore materiale didattico sarà reso disponibile su AMS Campus.

 

 

Metodi didattici

Lezioni frontali

Modalità di verifica dell'apprendimento

La prova d'esame ha lo scopo di verificare il raggiungimento dei seguenti obiettivi didattici:

Conoscenza approfondita degli strumenti illustrati durante le lezioni

Capacità di analizzare criticamente insiemi di dati

PROVE PARZIALI. È possibile sostenere due prove parziali: gli studenti che sosterranno le prove parziali potranno accettare il voto risultante dalla media delle valutazioni conseguite senza sostenere l'orale.

ESAME TOTALE. L'accertamento dell'apprendimento si articola in una prova scritta e una prova orale.

Per l'ammissione alla prova orale, obbligatoria per gli studenti che sostengono l'esame totale, bisogna aver superato la prova scritta.

Durante le prove scritte è consentito consultare dei “formulari” che ogni candidato provvederà a preparare da sé. I formulari devono essere contenuti in 4 facciate A4. Sul formulario si può riportare qualsiasi cosa (formule, commenti, esempi, ecc.). Oltre ai formulari non è consentito consultare altro materiale. I formulari devono essere consegnati unitamente all'elaborato.

Orario di ricevimento

Consulta il sito web di Fedele Pasquale Greco

Consulta il sito web di Carlo Trivisano