Scheda insegnamento

  • Docente Pier Luigi Martelli

  • Moduli Pier Luigi Martelli (Modulo 1)
    Allegra Via (Modulo 2)
    Pietro Di Lena (Modulo 3)

  • Crediti formativi 10

  • SSD INF/01

  • Modalità didattica Convenzionale - Lezioni in presenza (Modulo 1)
    Convenzionale - Lezioni in presenza (Modulo 2)
    Convenzionale - Lezioni in presenza (Modulo 3)

  • Lingua di insegnamento Inglese


L'insegnamento contribuisce al perseguimento degli Obiettivi di Sviluppo Sostenibile dell'Agenda 2030 dell'ONU.

Istruzione di qualità

Anno Accademico 2018/2019

Conoscenze e abilità da conseguire

At the end of the course, the student acquires computer science skills and tools used to solve bioinformatics problems. In particular, the student should be able to: understand algorithms behind most used bioinformatics software; use existing tools to solve common bioinformatics problems; design solutions to new problems using computer science techniques; choose the best computer science tools needed to solve a specific problem.


How to program in Python Language; Introduction to: Variables, Expressions and Statements, Functions, Conditionals and Recursion, Iteration, Strings, Lists, Tuples, Dictionaries, Classes and Objects, Inheritance, simple ADTs (Stacks and Queues), Trees and Graphs. The course includes also a brief introduction to dynamic programming. Pairwise alignment algorithms (local, global and semiglobal). Markov Models and Hidden Markov Model: general descriptions and main algorithms.


  • Module 1:

  •  Durbin, Eddy, Krogh, Mitchison. Biological sequence analysis Probabilistic models of proteins and nucleic acids. 1998. Cambridge University Press

    Module 2:

  • Downey, Elkner, Meyers. How to Think Like a Computer Scientist - Learning With Python. 2002. Available at http://www.greenteapress.com/thinkpython/thinkCSpy/
  • Miller and Ranum. Problem Solving with Algorithms and Data Structures. Franklin, Beedle & Associates; 2nd edition (August 22, 2011) Available at http:// [http://interactivepython.org/courselib/static/pythonds/index.html] interactivepython.org/courselib/static/pythonds/index.html
  • Libeskind-Hadas, Bush. Computing for Biologists. 2014. Cambridge University Press •

    Module 3:

  •  Newham. Learning the bash shell. 3 rd edition, 2005. O’ Reilly

  • Buffalo. Bioinformatics Data Skills. 2015. O’Reilly

Metodi didattici

Lectures, practicum and lab activity including python programming exercises.

Modalità di verifica dell'apprendimento

During the course the students are requested to write python programs on selected topics that must be known for the final evaluation.

A midterm exam will test the knowledge on the python language and syntax.

The final examination will be written exercises on writing python functions and shell scripts .

Strumenti a supporto della didattica

Video beam, PC, overhead projector, laboratory activity.

Orario di ricevimento

Consulta il sito web di Pier Luigi Martelli

Consulta il sito web di Allegra Via

Consulta il sito web di Pietro Di Lena