34624 - TECNOLOGIE ELETTRICHE INNOVATIVE M

Scheda insegnamento

Anno Accademico 2018/2019

Conoscenze e abilità da conseguire

Il corso si propone di approfondire la conoscenza delle tecnologie di base e di quelle innovative nel campo della produzione, accumulo e trasporto dell’energia elettrica, con particolare enfasi su fotovoltaico, celle a combustibile, batterie e superconduttori.

Contenuti

I Applicazioni delle Nanotecnologie nel campo elettrico ed energetico
1. Materiali nanostrutturati: principali metodi di sintesi; caratterizzazione delle proprietà; polimeri/silicati lamellari; nanotubi di carbonio
2. Cenni alle principali applicazioni dei materiali nanostrutturati in ambito energetico: batterie, celle a combustibile, pannelli fotovoltaici.  

II Sistemi elettrochimici per l'accumulo dell'energia
1. Principi di funzionamento delle batterie: pila di Volta e Daniell, polarizzazione e reversibilità 
2. Caratteristiche delle batterie: tensione, capacità  e loro dipendenza da fattori progettuali.
3. Accumulatori: accumulatori acidi (reazioni elettrochimiche fondamentali, gassing e accumulatori a ricombinazione di gas, caratteristiche delle celle al piombo), accumulatori alcalini (tipi, reazioni elettrochimiche fondamentali, caratteristiche delle celle al cadmio, batterie sigillate), accumulatori per automobile.
4. Accumulatori innovativi: celle zinco/aria, Zebra, al litio-ioni e ai  polimeri di litio.

III Celle a combustibile
1. Principi di funzionamento della cella, effetto dei parametri operativi sulle prestazioni.
2. Tipi di celle (AFC, PEMFC, PAFC, MCFC e SOFC) ed applicazioni.
3. Principali metodologie di produzione dell'idrogeno (elettrolisi e reforming).

IV Componenti a Superconduttori 
1. Aspetti generali della superconduttività : cenni storici, proprietà  macroscopiche, fenomenologia dei superconduttori, superconduttori del I tipo, temperatura critica campo critico, corrente critica, frequenza critica e mutui legami, lo stato intermedio e lo stato misto, superconduttori del II tipo, teoria di London, cenni sulle teorie di Ginnzburg-Landau e BCS, superconduttori reali e fenomeni di pinning.
2. Ossidi superconduttori - una nuova classe di materiali per l'ingegneria elettrica: materiali superconduttori per le applicazioni elettriche, struttura cristallina e metodi di preparazione, BSCCO e YBCO, configurazione dei manufatti superconduttori per applicazioni energetiche.
3. Metodi per la caratterizzazione elettromagnetica dei superconduttori: misura della corrente critica, misura della magnetizzazione e ciclo di isteresi. Esercitazioni di laboratorio.
4. Applicazioni nel settore energetico: vari tipi di applicazioni (risonanza magnetica, limitatori di corrente, SMES, motori e trasformatori, cavi a superconduttori).

V Produzione di energia fotovoltaica
1. Effetto fotovoltaico. Principali tecnologie nel campo del fotovoltaico: celle al silicio (monocristallino, policristallino, amorfo); celle a film sottile, celle organiche.
2. Criteri di progetto di un impianto fotovoltaico. Esempi di progettazione. 

Metodi didattici

Il corso si articola in lezioni frontali ed esercitazioni di laboratorio su superconduttori, batterie e celle fotovoltaiche.

Modalità di verifica dell'apprendimento

La verifica dell’apprendimento avviene attraverso un esame finale, che accerta l’acquisizione delle conoscenze e delle abilità attese tramite lo svolgimento di una prova orale.

La prova consiste in 3 domande sugli argomenti del corso, volte ad accertare le conoscenze acquisite dello studente e le capacità di applicare tali conoscenze in semplici problemi pratici.

La prima domanda è un tema scritto che deve essere svolto in 1 ora senza l'aiuto di appunti o libri. Le altre due domande poste del docente vengono invece discusse oralmente.

Il superamento dell’esame sarà garantito agli studenti che dimostreranno padronanza e capacità operativa in relazione ai concetti chiave illustrati nell’insegnamento, ed in particolare alle tecnologie fotovoltaiche, superconduttive e relative ai sistemi di accumulo elettrochimico.

Un punteggio più elevato sarà attribuito agli studenti che dimostreranno di aver compreso ed essere capaci di utilizzare tutti i contenuti dell’insegnamento, illustrandoli con capacità di linguaggio, risolvendo problemi anche complessi e mostrando buona capacità operativa.

Il mancato superamento dell’esame potrà essere dovuto all’insufficiente conoscenza dei concetti chiave, in particolare relativi ai sistemi di accumulo tradizionale e innovativo, ai fenomeni della superconduttività, e ai sistemi fotovoltaici, nonché alla mancata padronanza del linguaggio tecnico.

Strumenti a supporto della didattica

L'e-book e le slide del corso saranno messe a disposizione degli studenti sulla piattaforma Insegnamenti Online. Si veda il link al materiale didattico.

Orario di ricevimento

Consulta il sito web di Davide Fabiani