- Docente: Daniel Remondini
- Crediti formativi: 6
- SSD: FIS/07
- Lingua di insegnamento: Italiano
- Modalità didattica: Convenzionale - Lezioni in presenza
- Campus: Bologna
- Corso: Laurea Magistrale in Fisica (cod. 8025)
Conoscenze e abilità da conseguire
Al termine del corso, lo studente ha una conoscenza delle principali proprietà matematiche che caratterizzano un grafo, ed ha una panoramica delle più recenti e importanti applicazioni dei modelli a network in situazioni reali, specialmente in ambito biologico. Inoltre, acquisisce competenze sui principali algoritmi utilizzati per analizzare un grafo e per implementare modelli dinamici immersi in una struttura a network di varia topologia.
Contenuti
Programma indicativo
Introduzione alle reti complesse: esempi dalla fisica, biologia, sociologia, informatica. Esempi: caratteristiche di Internet, network in biologia
Definizione di network: grafo. Grafi semplici e bipartiti. Network pesati e non. Network diretti e non.
Caratterizzazione della topologia di un network a livello globale e di singolo nodo: distribuzione dei parametri per singolo nodo (connettività). Connettività, clustering, misure di centralità. Diametro di un network. Sottonetworks; clustering di un network; cliques e moduli. Definizione e calcolo delle principali misure del network. Metodi di clustering: Newman-Girwan.
Modello base: random networks alla Erdos-Renyi. (Analogia con i modelli di percolazione.) Distribuzione dei parametri del network e teoremi limite per N>>1. Matrici di Wigner e spettro degli autovalori. Transizione di fase e giant cluster. Relazione tra vari parametri del network (assortatività-disassortatività [modelli di MEJ Newman, Maslov-Sneppen], connettività vs. betwenness centrality).
Lattice come network: proprietà. Generalizzazione a small world networks: high clustering short distances (log(N)). Modello di Watts-Strogatz: rewiring.
Scale free networks: esempi. Modello di crescita di Barabasi-Alberts: preferential attachment. Scale log-log. Istogrammi e possibili errori (heavy tails).
Perturbazioni di un network: attack/error tolerance, node relevance & efficiency (Barabasi, nostro lavoro).
Sviluppo di alcuni esempi particolari: network & Sistema Immunitario, serie temporali di espressione genica, modello BCM di plasticità e crescita neurale. Esempi in modelli biologici (gerarchia: Jeong-Tombor-Barabasi, motifs: Alon).
Testi/Bibliografia
Dispense e articoli proposti dal docente.
Strumenti a supporto della didattica
Verranno svolte esercitazioni con software per la generazione e l'analisi di network: Scilab, Netdraw, Pajek. Visualizzazione di un network: colorazione e ridimensionamento in funzione delle proprietà topologiche. Calcolo dei principali parametri del network. Principali formati di file I/O.
Orario di ricevimento
Consulta il sito web di Daniel Remondini