- Docente: Stefano Salvioli
- Credits: 5
- SSD: MED/04
- Language: English
- Moduli: Stefano Salvioli (Modulo 1) Miriam Capri (Modulo 2)
- Teaching Mode: Traditional lectures (Modulo 1) Traditional lectures (Modulo 2)
- Campus: Bologna
- Corso: Single cycle degree programme (LMCU) in Medicine and Surgery (cod. 9210)
-
from Nov 06, 2023 to Dec 12, 2023
-
from Oct 09, 2023 to Oct 31, 2023
Learning outcomes
Describe the basis of the immune system as a fundamental defense system, and its alterations as a cause of disease, with reference to specific diseases.
Course contents
Immunology (Integrated Course “Basic Mechanisms of Diseases”)
Lectures given by Dr. Miriam Capri
- Lesson #1: Introduction to the Immune System (IS) and its evolution, historical notes: functions and features of IS; innate, acquired and humoral immunity; cells of the IS: lymphocytes, macrophages, granulocytes, dendritic cells, etc. Primary and secondary response.
- Lesson #2. Organs and tissues of the IS: generative and secondary organs (bone marrow, thymus, lymph nodes, spleen, IS associated to the mucosae). Lymphatic System and lymphocyte recirculation, inflammatory response.
- Lesson #3-4: Innate Immunity: physical barriers, preformed proteins, professional phagocytes, NK and NKT cells, gamma-delta lymphocytes. Mechanisms of phagocytosis and cytotoxicity NK. Mechanisms of antigen recognition of Innate Immunity: TLRs, NLRs, RLRs, CLRs, cGAS-STING, KIR and inflammasomes. The memory of Innate Immunity: the trained immunity.
- Lesson #5-6: Specific/Adaptive Immunity: features and functions, antigen receptors of cells of the specific immunity (membrane-linked antibodies and TCR), antigen recognition; creation of the receptor repertoire, somatic recombination, clonal distribution. MHC molecules, antigen processing and presentation; proteasome and immunoproteasome. Dendritic cells.
- Lesson #7. B Lymphocytes: features, development, maturation and activation; structure of B cell receptor. Functions in the Immune response: secreted antibodies: structure, functions, classification.
- Lesson #8. T lymphocytes: features of T helper (CD4+) and cytotoxic (CD8+), development, maturation and activation; structure of T cell receptor. Functions in the Immune response: cell-mediated immunity. Production of cytokines, Th1 and Th2 lymphocytes, natural and induced Treg. Cytotoxicity. Regional immunity: the intestinal mucoses. Relationships with the gut microbiota. Th17 lymphocytes.
Lectures given by Dr. Stefano Salvioli
- Lesson #9: T-B Cooperation; costimulation: role of accessorial molecules; T-dependent and independent responses; germinative centre reaction and isotypic switch. Cytokines and cytokine receptors. Th1 and Th2 responses. Tolerance: recognition and discrimination between self and non-self. Mechanisms of central (negative selection) and peripheral tolerance (anergy, deletion and suppression).
- Lesson #10: Effective phase of the Immune Response: the Complement System: components, functions, regulation and deficits.
- Lesson #11: Effective phase of the Immune Response: activation of macrophages M1 and M2; delayed type hypersensitivity; Cytotoxic T lymphocytes activation.
- Lesson #12: Immunity against pathogens: extra and intra-cellular bacteria; viruses and parasites. Mechanisms of escape from the immune response.
- Lesson #13: Vaccines and vaccine strategies. Different types of vaccines against pathogens (viruses, oncogenic viruses, bacteria, toxins). Risks of vaccinations. Psychological issues on vaccines.
- Lesson #14: Immunology of transplants: transplants classifications: auto-, allo- and xeno-transplants; biological bases of transplant rejection; different types of rejection; GVHD; strategies to prevent transplant rejection: HLA typization, immunosuppressive therapies.
- Lesson #15: Immunopathology: alterations of the immune response; classification of immunopathologies; autoimmunity.
- Lesson #16: Type I hypersensitivity: IgE-based allergies; Type II hypersensitivity (IgG autoantibodies acting as inflammation trigger, complement activators, receptor agonist or antagonist), Type III hypersensitivity (immunocomplexes diseases) and type IV hypersensitivity (autoreactive T cell-based diseases).
- Lesson #17: Congenital immunodeficiencies of the innate and adaptive immune system. SCIDs and other syndromes.
- Lesson #18: Acquired immunodeficiencies. HIV and AIDS.
- Lesson #19: How the IS ages: immunosenescence. Consequences of the decreased immune response on the susceptibility to age-associated diseases. Inflammation as a driving force of aging and diseases (inflammaging). Inflammaging and cytokine release storm: the special case of Covid-19.
- Lesson #20: Cancer immunology. Immunogenicity of cancers. Immune escape of cancers. Immunotherapies to cancers: vaccines against cancer; monoclonal antibodies, anti-PD-1 and PDL-1; CAR-T cells.
Readings/Bibliography
Abbas, Lichtman, Pillai: Cellular and molecular immunology, 2021 (tenth edition), Elsevier.
Kenneth Murphy & Casey Weaver: Janeway's Immunobiology, 2022 (10th Edition), Garland Science.
Geha, Notarangelo: Case studies in immunology: a clinical companion, 2016 (7th Edition), Garland Sciences.
Dianzani - Puccillo (a cura di): Immunologia e Immunopatologia, 2022 (prima edizione), edi-ermes
Teaching methods
frontal lectures with ppt slides
Assessment methods
Student learning will be checked at the end of the Integrated Course “Basic Mechanisms of Diseases” by an oral exam.
Since Immunology is considered preparatory to the Pathology/Physiopathology/Histo-Pathology modules, the board will allow the Immunology module exam to be taken before the exams for the other modules. Conversely, the Pathology/Physiopathology/Histo-pathology modules are inseparable as they concern complementary aspects of the same subject. The examination itself is designed to ascertain the student's ability to make a synthesis of the subjects, an ability that the student must necessarily attain before approaching clinical subjects.
The Immunology grade will be held valid 1 year during which the student will have at least 4 opportunities to achieve a valid grade in the Pathology/Physiopathology/Histo-pathology modules. If not, the student will have to retake both Immunology and Patho/physio/histo-pathology exams.
Exams are scheduled in presence only, unless otherwise prescribed by National Authorities in case of a Covid 19 pandemic return. Exceptions will be considered upon specific request according to the University regulation.
Grading procedure:
- knowledge of a very limited number of topics and limited analytical capacity → 18-19 out of 30;
- knowledge of a limited number of topics and basic analytical capacity → 20-24 out of 30;
- knowledge of a consistent number of topics and good analytical capacity → 25-29 out of 30;
- knowledge of all topics and very good analytical capacity → 30-30L out of 30.
Teaching tools
PPT slide files available at the VIRTUALE website (https://virtuale.unibo.it/course/view.php?id=18943).
Office hours
See the website of Stefano Salvioli
See the website of Miriam Capri
SDGs
This teaching activity contributes to the achievement of the Sustainable Development Goals of the UN 2030 Agenda.