B2246 - INTRODUCTION TO STRING THEORY

Academic Year 2025/2026

  • Moduli: Michele Cicoli (Modulo 1) Ling Lin (Modulo 2)
  • Teaching Mode: Traditional lectures (Modulo 1) Traditional lectures (Modulo 2)
  • Campus: Bologna
  • Corso: Second cycle degree programme (LM) in Physics (cod. 9245)

Learning outcomes

This course gives a comprehensive introduction to the basic concepts of string theory. At the end of the course the students will gain a solid knowledge of the bosonic string, superstring theory, spacetime effective actions, string compactifications, D-branes and string dualities, holography. In particular they will acquire the tools necessary to understand modern developments of string theory and its connections with quantum field theory, low energy phenomenology and cosmology, supersymmetric gauge theories and pure mathematics.

Course contents

Module Prof. Lin

1) Motivation and overview

2) Classical relativistic string

3) The quantum string

4) Scattering of strings

5) Strings in background fields

6) The supersymmetric string

 

Module Prof. Cicoli

1) Low energy effective action of string theory

2) D-brane action and dualities

3) Type II string compactifications on Calabi-Yau manifolds

4) Flux compactifications and moduli stabilisation

5) Supersymmetry breaking in string models

6) Basic principles of string cosmology

Readings/Bibliography

1) D. Tong, “String Theory” (Cambridge, Part III Maths, https://www.damtp.cam.ac.uk/user/tong/string.html),

2) T. Weigand, “Introduction to String Theory” (Heidelberg University, https://www.thphys.uni-heidelberg.de/courses/weigand/Strings11-12.pdf),

3) A. Uranga, “Graduate Course in String Theory” (Universidad Autonoma de Madrid, https://members.ift.uam-csic.es/auranga/firstpage.html ).

Further reading and references:

1) R. Blumenhagen, D. Lüst, S. Theisen, “Basic Concepts of String Theory”,

2) M. Green, J. Schwarz, E. Witten, “Superstring Theory” (Vol. I),

3) J. Polchinski, “String Theory” (Vol. I),

4) B. Zwiebach, “A First Course in String Theory”

5) R. Blumenhagen, B. Kors, D. Luest, S. Stieberger, “Four-dimensional String Compactifications with D-Branes, Orientifolds and Fluxes [https://inspirehep.net/literature/730501] ”:

https://arxiv.org/pdf/hep-th/0610327

6) J.Louis, “Introduction to String Phenomenology”:

https://www.physik.uni-hamburg.de/th2/ag-louis/dokumente/lectures/ws-14-15/ws-14-15-lecture-notes.pdf

7) J. Louis “Generalised Calabi-Yau compactifications with D-branes and fluxes”

https://www.physik.uni-hamburg.de/th2/ag-louis/dokumente/lecture-notes-and-talks/generalized-calabi-yau-compactifications-with-d-branes-and-fluxes.pdf

8) M. Cicoli, J. Conlon, A. Maharana, S. Parameswaran, F. Quevedo, I. Zavala, "String cosmology: from the early universe to today":

https://arxiv.org/pdf/2303.04819

Teaching methods

Standard blackboard lectures

Assessment methods

Oral interview based on a slide presentation on a topic chosen by the student followed by theory questions.

Students with Specific Learning Disabilities (SLD) or temporary/permanent disabilities are advised to contact the corresponding University Office in advance ( https://site.unibo.it/studenti-con-disabilita-e-dsa/en ). The office will be responsible for proposing any necessary accommodations to the students concerned. These accommodations must be submitted to the instructor for approval at least 15 days in advance, and will be evaluated in light of the learning objectives of the course.

Office hours

See the website of Michele Cicoli

See the website of Ling Lin