34831 - Physical-Mathematical Models for Industrial Engineering (2nd cycle)

Course Unit Page

SDGs

This teaching activity contributes to the achievement of the Sustainable Development Goals of the UN 2030 Agenda.

Quality education

Academic Year 2019/2020

Learning outcomes

The student must understand and apply some important instruments of advanced mathematics useful in engineering mechanical field.

Course contents

- Introduction on mathematical modeling                                                  - Review on ordinary differential equations
- Dynamical systems and applications
- The Fourier series
- The Fourier transform
- The Laplace transform
- Introduction to partial differential equations;
examples and applications of hyperbolic, elliptic and
parabolic-type equations
- Outlines on probability theory

Readings/Bibliography

1.T. Ruggeri, Introduzione alla Termomeccanica dei Continui, Monduzzi editore, 2007;

2.F. Bagarello, "Fisica Matematica", Zanichelli editore, Bologna, 2007;

3.S. Abenda, S. Matarasso, "Metodi Matematici", Societa' Editrice Esculapio, Bologna, 2003;

4.G. Borgioli, Modelli Matematici di Evoluzione ed Equazioni Differenziali, Celid editore, 1996;

5.S. Salsa, Equazioni a Derivate Parziali, Springer, 2004;

6.N. Tichonov, A. A. Samarskij, Equazioni della Fisica Matematica, edizioni Mir, 1981;

7.Sheldom M. Ross, Calcolo delle probabilità, Apogeo editore, 2004.

Teaching methods

Lessons with theory and exercises by means of blackboard and videoprojector.

Assessment methods

First a written final examination, in order to show the ability of solving e.g. Fourier series and partial differential equations, and then a discussion about some of the principal arguments of theory developed during the lessons, with particular attention to the methodological approach.

Teaching tools

Video projector.

Office hours

See the website of Leonardo Seccia