22996 - Fundamentals of Advanced Analysis I

Academic Year 2008/2009

  • Docente: Angelo Cavallucci
  • Credits: 6
  • SSD: MAT/05
  • Language: Italian
  • Teaching Mode: Traditional lectures
  • Campus: Bologna
  • Corso: First cycle degree programme (L) in Mathematics (cod. 0436)

Learning outcomes

Introduction to: Fourier Transform, Hilbert and Banach Spaces, weak derivatives

Course contents

Lp Spaces: Completeness. Density of some function classes. Regularisation. Fourier Transform in L^1, L^2. Spaces H^s and their traces. Hilbert Spaces: Orthogonal projection. Dual space. Orthonormal basis. Fourier Series. Weak convergence .Minimum of convex functions. Banach Spaces : continuous or compact linear mappings; elements of differential calculus and implicit function theorem.

Readings/Bibliography

* B. Pini, Terzo corso di analisi matematica, CLUEB, Bologna, 1977-79 * B. Pini, Lezioni di analisi matematica di secondo livello, Parte prima, CLUEB, Bologna * W. Rudin, Analisi reale e complessa, Boringhieri, Torino, 1974 * W. Rudin, Functional analysis, Mc Grow-Hill, New York, 1973

Teaching methods

Front lessons.

Assessment methods

Written and oral examination

Office hours

See the website of Angelo Cavallucci