00662 - Mathematical Logic

Academic Year 2011/2012

  • Docente: Piero Plazzi
  • Credits: 6
  • SSD: MAT/01
  • Language: Italian
  • Teaching Mode: Traditional lectures
  • Campus: Bologna
  • Corso: First cycle degree programme (L) in Mathematics (cod. 8010)

Learning outcomes

See the related section in Italian.

Course contents

0. Introduction. Mathematical, symbolic, formal logic. Formally correct proofs. Syntax vs semantics.

1. Predicate calculus. 1.1 Alphabet, variables, quantifiers; wffs, bound or free variables, sentences. Semantics: interpretations, satisfiability, truth, logical validity. Models.

1.2 Sentences and propositional logic: truth tables, tautologies, normal forms and connectives per se.

1.3 Derivation rules, theories, axioms and theorems. Model theorem. Correctness and (Gödel) completeness theorem; compactness and nonstandard models (hints).

2. Two basic mathematical theories. Formal arithmetics (Peano Arithmetics, or PA) vs classical Peano axioms: basic recursion theory and Gödel incompleteness theorems for PA (hints). Naïve set theory, its "paradoxes" and Zermelo-Fraenkel formal set theory: a comparison.

Readings/Bibliography

See the related section in Italian.

Teaching methods

See the related section in Italian.

Assessment methods

See the related section in Italian.

Teaching tools

See the related section in Italian.

Office hours

See the website of Piero Plazzi