-
Gelens, F., Äijälä, J., Roberts, L., ..., Garagnani, M., Vinck, M., & Canales-Johnson, A. (2024) Distributed representations of prediction error signals across the cortical hierarchy are synergistic. Nature Communications 15(1):3941 DOI: 10.1038/s41467-024-48329-7
-
Garagnani, M. (2024) On the ability of standard and brain-constrained deep neural networks to support cognitive superposition: a position paper. Cognitive Neurodynamics. DOI:10.1007/s11571-023-10061-1
-
Shtyrov, Y., Efremov, A., Kuptsova, A., Wennekers, T., Gutkin, B., & Garagnani, M. (2023) Breakdown of category-specific word representations in a brain-constrained neurocomputational model of semantic dementia. Scientific Reports 13:19572. DOI: 10.1038/s41598-023-41922-8
-
Henningsen-Schomers, M.R., Garagnani, M., & Pulvermüller, F. (2023). Influence of language on perception and concept formation in a brain-constrained deep neural network model. Philosophical Transactions of the Royal Society B 378: 20210373. DOI: 10.1098/rstb.2021.0373.
-
Garagnani, M., Kirilina, E., & Pulvermüller, F. (2021) Semantic grounding of novel spoken words in the primary visual cortex. Frontiers in Human Neuroscience 15: 581847. DOI: 10.3389/fnhum.2021.581847
-
Tomasello, R., Wennekers, T., Garagnani, M., & Pulvermüller, F. (2019) Visual cortex recruitment during language processing in blind individuals is explained by Hebbian learning. Scientific Reports 9:3579 (16 pages). DOI: 10.1038/s41598-019-39864-1
-
Tomasello, R., Garagnani, M., Wennekers, T. & Pulvermüller, F. (2018) A neurobiologically constrained cortex model of semantic grounding with spiking neurons and brain-like connectivity. Frontiers in Computational Neuroscience 12:88 (17 pages). DOI: 10.3389/fncom.2018.00088
-
Schomers, M., Garagnani, M., & Pulvermüller, F. (2017) Neurocomputational consequences of evolutionary connectivity changes in perisylvian language cortex. Journal of Neuroscience 37(11):3045– 3055. DOI: https://doi.org/10.1523/JNEUROSCI.2693-16.2017
-
Garagnani, M., Lucchese, G., Tomasello, R., Wennekers, T. & Pulvermüller, F. (2017) A Spiking Neurocomputational Model of High-Frequency Oscillatory Brain Responses to Words and Pseudowords. Frontiers in Computational Neuroscience 10:145 (19 pages). DOI: 10.3389/fncom.2016.00145
-
Tomasello, R., Garagnani, M., Wennekers, T. & Pulvermüller, F. (2017) Brain connections of words, perceptions and actions: A neurobiological model of spatio-temporal semantic activation in the human cortex. Neuropsychologia 98:111–129. DOI: 10.1016/j.neuropsychologia.2016.07.00
-
Garagnani, M. & Pulvermüller, F. (2016) Conceptual grounding in action and perception: a neurocomputational model of the emergence of category specificity and semantic hubs. European Journal of Neuroscience 43(6):721–737. DOI:10.1111/ejn.13145
-
Pulvermüller, F., Garagnani, M., Wennekers, T. (2014) Thinking in circuits: toward neurobiological explanation in cognitive neuroscience. Biological Cybernetics 108(5):573–593. ISSN: 0340-1200. DOI: 10.1007/s00422-014-0603-9
-
Pulvermüller, F. & Garagnani, M. (2014) From sensorimotor learning to memory cells in prefrontal and anterior-temporal cortex: A neurocomputational study of disembodiment. Cortex 57:1–21. DOI: 10.1016/j.cortex.2014.02.015
-
Ludlow, A., Mohr, B., Whitmore, A., Garagnani, M., Pulvermüller, F. & Gutierrez, R. (2014) Auditory processing and sensory behaviours in children with autism spectrum disorders as revealed by the mismatch negativity. Brain and Cognition 86(2014):55–63. DOI: 10.1016/j.bandc.2014.01.016
-
Garagnani, M. & Pulvermüller, F. (2013) Neuronal correlates of decisions to speak and act: spontaneous emergence and dynamic topographies in a computational model of frontal and temporal areas. Brain and Language 127(1):75–85. DOI: 10.1016/j.bandl.2013.02.001
-
Garagnani, M. & Pulvermüller, F. (2011) From Sounds to Words: a neurocomputational model of adaptation, inhibition and memory processes in auditory change detection. Neuroimage 54(1):170-181. DOI: 10.1016/j.neuroimage.2010.08.031
-
Garagnani, M., Shtyrov, Y., & Pulvermüller, F. (2009) Effects of attention on what is known and what is not: MEG evidence for discrete memory circuits. Frontiers in Human Neuroscience 3:10 (12 pages). DOI:10.3389/neuro.09.010.2009
-
Garagnani, M., Wennekers, T. & Pulvermüller, F. (2009) Recruitment and consolidation of cell assemblies for words by way of Hebbian learning and competition in a multi-layer neural network. Cognitive Computation 1(2):160–176. DOI: 10.1007/s12559-009-9011-1
-
Garagnani, M., Wennekers, T. & Pulvermüller, F. (2008) A neuroanatomically-grounded Hebbian learning model of attention-language interactions in the human brain. European Journal of Neuroscience 27(2):492–513. DOI: 10.1111/j.1460-9568.2008.06015.x
-
Garagnani, M., Wennekers, T. & Pulvermüller, F. (2007) A neuronal model of the language cortex. Neurocomputing 70(10-12):1914–19. DOI: 10.1016/j.neucom.2006.10.076
-
Wennekers, T., Garagnani, M. & Pulvermüller, F. (2006) Language models based on Hebbian cell assemblies. Journal of Physiology – Paris 100(1-3):16–30. DOI: 10.1016/j.jphysparis.2006.09.007