Foto del docente

Massimiliano Garagnani

Professore associato

Dipartimento di Filosofia

Settore scientifico disciplinare: INFO-01/A Informatica

Pubblicazioni

ARTICOLI SU RIVISTA:

  1. Gelens, F., Äijälä, J., Roberts, L., ..., Garagnani, M., Vinck, M., & Canales-Johnson, A. (2024) Distributed representations of prediction error signals across the cortical hierarchy are synergistic. Nature Communications 15(1):3941 DOI: 10.1038/s41467-024-48329-7

  2. Garagnani, M. (2024) On the ability of standard and brain-constrained deep neural networks to support cognitive superposition: a position paper. Cognitive Neurodynamics. DOI:10.1007/s11571-023-10061-1

  3. Shtyrov, Y., Efremov, A., Kuptsova, A., Wennekers, T., Gutkin, B., & Garagnani, M. (2023) Breakdown of category-specific word representations in a brain-constrained neurocomputational model of semantic dementia. Scientific Reports 13:19572. DOI: 10.1038/s41598-023-41922-8

  4. Henningsen-Schomers, M.R., Garagnani, M., & Pulvermüller, F. (2023). Influence of language on perception and concept formation in a brain-constrained deep neural network model. Philosophical Transactions of the Royal Society B 378: 20210373. DOI: 10.1098/rstb.2021.0373.

  5. Garagnani, M., Kirilina, E., & Pulvermüller, F. (2021) Semantic grounding of novel spoken words in the primary visual cortex. Frontiers in Human Neuroscience 15: 581847. DOI: 10.3389/fnhum.2021.581847

  6. Tomasello, R., Wennekers, T., Garagnani, M., & Pulvermüller, F. (2019) Visual cortex recruitment during language processing in blind individuals is explained by Hebbian learning. Scientific Reports 9:3579 (16 pages). DOI: 10.1038/s41598-019-39864-1

  7. Tomasello, R., Garagnani, M., Wennekers, T. & Pulvermüller, F. (2018) A neurobiologically constrained cortex model of semantic grounding with spiking neurons and brain-like connectivity. Frontiers in Computational Neuroscience 12:88 (17 pages). DOI: 10.3389/fncom.2018.00088

  8. Schomers, M., Garagnani, M., & Pulvermüller, F. (2017) Neurocomputational consequences of evolutionary connectivity changes in perisylvian language cortex. Journal of Neuroscience 37(11):3045– 3055. DOI: https://doi.org/10.1523/JNEUROSCI.2693-16.2017

  9. Garagnani, M., Lucchese, G., Tomasello, R., Wennekers, T. & Pulvermüller, F. (2017) A Spiking Neurocomputational Model of High-Frequency Oscillatory Brain Responses to Words and Pseudowords. Frontiers in Computational Neuroscience 10:145 (19 pages). DOI: 10.3389/fncom.2016.00145

  10. Tomasello, R., Garagnani, M., Wennekers, T. & Pulvermüller, F. (2017) Brain connections of words, perceptions and actions: A neurobiological model of spatio-temporal semantic activation in the human cortex. Neuropsychologia 98:111–129. DOI: 10.1016/j.neuropsychologia.2016.07.00

  11. Garagnani, M. & Pulvermüller, F. (2016) Conceptual grounding in action and perception: a neurocomputational model of the emergence of category specificity and semantic hubs. European Journal of Neuroscience 43(6):721–737. DOI:10.1111/ejn.13145

  12. Pulvermüller, F., Garagnani, M., Wennekers, T. (2014) Thinking in circuits: toward neurobiological explanation in cognitive neuroscience. Biological Cybernetics 108(5):573–593. ISSN: 0340-1200. DOI: 10.1007/s00422-014-0603-9

  13. Pulvermüller, F. & Garagnani, M. (2014) From sensorimotor learning to memory cells in prefrontal and anterior-temporal cortex: A neurocomputational study of disembodiment. Cortex 57:1–21. DOI: 10.1016/j.cortex.2014.02.015

  14. Ludlow, A., Mohr, B., Whitmore, A., Garagnani, M., Pulvermüller, F. & Gutierrez, R. (2014) Auditory processing and sensory behaviours in children with autism spectrum disorders as revealed by the mismatch negativity. Brain and Cognition 86(2014):55–63. DOI: 10.1016/j.bandc.2014.01.016

  15. Garagnani, M. & Pulvermüller, F. (2013) Neuronal correlates of decisions to speak and act: spontaneous emergence and dynamic topographies in a computational model of frontal and temporal areas. Brain and Language 127(1):75–85. DOI: 10.1016/j.bandl.2013.02.001

  16. Garagnani, M. & Pulvermüller, F. (2011) From Sounds to Words: a neurocomputational model of adaptation, inhibition and memory processes in auditory change detection. Neuroimage 54(1):170-181. DOI: 10.1016/j.neuroimage.2010.08.031

  17. Garagnani, M., Shtyrov, Y., & Pulvermüller, F. (2009) Effects of attention on what is known and what is not: MEG evidence for discrete memory circuits. Frontiers in Human Neuroscience 3:10 (12 pages). DOI:10.3389/neuro.09.010.2009

  18. Garagnani, M., Wennekers, T. & Pulvermüller, F. (2009) Recruitment and consolidation of cell assemblies for words by way of Hebbian learning and competition in a multi-layer neural network. Cognitive Computation 1(2):160–176. DOI: 10.1007/s12559-009-9011-1

  19. Garagnani, M., Wennekers, T. & Pulvermüller, F. (2008) A neuroanatomically-grounded Hebbian learning model of attention-language interactions in the human brain. European Journal of Neuroscience 27(2):492–513. DOI: 10.1111/j.1460-9568.2008.06015.x

  20. Garagnani, M., Wennekers, T. & Pulvermüller, F. (2007) A neuronal model of the language cortex. Neurocomputing 70(10-12):1914–19. DOI: 10.1016/j.neucom.2006.10.076

  21. Wennekers, T., Garagnani, M. & Pulvermüller, F. (2006) Language models based on Hebbian cell assemblies. Journal of Physiology – Paris 100(1-3):16–30. DOI: 10.1016/j.jphysparis.2006.09.007


ARTICOLI IN ATTI DI CONVEGNI CON REVISIONE PARITARIA

  1. Garagnani, M., Kirilina, E., & Pulvermüller, F. (2020) Perception-action circuits for word learning and semantic grounding: a neurocomputational model and neuroimaging study. In Raposo, M., Ribeiro, P., Sério, S., Staiano, A., & Ciaramella, A. (Eds.) Computational Intelligence Methods for Bioinformatics and Biostatistics: 15th Int.’al Meeting (CIBB 2018), Caparica, Portugal, Sep. 2018 – Revised Selected Papers, Lecture Notes in Bioinformatics, vol. 11925, Cham, Switzerland: Springer International. ISBN 978-3-030-34584-6. DOI: 10.1007/978-3-030-34585-3.

  2. Shtyrov, Y., Kimppa, L. & Garagnani, M. (2015) Electrophysiological and haemodynamic biomarkers of rapid acquisition of novel wordforms. Symposium on Microstructures of Learning, Lund (Sweden), May 2014, pp. 21-24. Frontiers in Neuroscience, 7. DOI: 10.3389/conf.fnins.2015.88.00007.

  3. Adams, S.V., Wennekers, T., Cangelosi, A., Garagnani, M. & Pulvermüller, F. (2014) Learning Visual-Motor Cell Assemblies for the iCub Robot using a Neuroanatomically grounded Neural Network. IEEE Symposium Series on Computational Intelligence, Cognitive Algorithms, Mind and Brain (SSCI-CCMB 2014), Orlando, FL, 9-12 December 2014, pp. 1-8. DOI: 10.1109/CCMB.2014.7020687.

  4. Garagnani, M. (2004) A Framework for Hybrid Planning. In Bramer, M., Coenen, F. & Allen, T. (eds.) Proc. 24th SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence (SGAI-2004), Cambridge, Dec. 2004. Research and Development in Intelligent Systems XXI, Springer, London, pp. 214-227. DOI: 10.1007/1-84628-102-4.

  5. Garagnani, M. (2003) Model-based planning in physical domains using SetGraphs. In Coenen, F., Preece, A. & Macintosh, A. (eds.), Proc. 23rd SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence (SGAI-2003), Cambridge, Dec. 2003. Research and Development in Intelligent Systems XX, Springer, London, pp. 295-308. DOI: 10.1007/978-0-85729-412-8_22. ISBN: 978-1-85233-780-3.

  6. Garagnani, M. & Ding, Y. (2003) Model-based Planning for Object-Rearrangement Problems. Proc. of 13th International Conf. on Automated Planning & Scheduling (ICAPS 03) – Workshop on PDDL, Trento (IT), June 2003, pp. 49-58. ISSN 07384602.

  7. Davidson, M. & Garagnani, M. (2002) Pre-processing planning domains containing Language Axioms. In Grant, T., & Witteveen, C. (eds.) Proc. of 21st Workshop of the UK Planning and Scheduling SIG (PLANSIG 02), Delft (NL), Nov. 2002, pp. 23-34. ISSN 1368-5708.

  8. Garagnani, M., Shastri, L. & Wendelken, C. (2002) A connectionist model of planning as back-chaining search. In Gray, W. & Schunn, C. (eds.) Proc. of 24th Annual Meeting of the Cognitive Science Society (CogSci 2002), Fairfax, VA. Mahwah (NJ): Lawrence Erlbaum, pp. 345-350. DOI: 10.4324/9781315782379-96. (Extended version: In Levine, J. (ed.) Proc. of 20th Workshop of the UK Planning & Scheduling SIG – PLANSIG 2001, Edinburgh, Dec. 2001. ISSN 1368-5708).

  9. Garagnani, M. (2001) A correct algorithm for efficient planning with preprocessed domain axioms. In Bramer M., Preece A. & Coenen F. (eds.) Proc. 20th SGAI Int.’al Conf. on Knowledge Based Systems and Applied AI (ES-2000), Cambridge, Dec. 2000. Research and Development in Intelligent Systems XVII, Springer, London, pp. 363-374. DOI: 10.1007/978-1-4471-0269-4_26.

  10. Garagnani, M. (2000) Speaker-hearer beliefs for discourse planning. In Arabnia, H.R. (Ed.), Proc. of the International Conference on Artificial Intelligence (IC-AI 2000), Vol. II, Las Vegas, NV, 26-29 June 2000. CSREA Press, Athens, GA (USA), pp. 1009-15. ISBN: 1-892512-57-2.

  11. Garagnani, M. (1999a) A Sound Linear Algorithm for Preprocessing planning problems with language axioms. In Petley, G., Coddington, A. & Aylett, R. (eds.) Proc. of the 18th Workshop of the UK Planning & Scheduling SIG (PLANSIG 99), Manchester, UK. pp. 40-53. ISSN 1368-5708.

  12. Garagnani, M. (1998b) Belief Systems and Plans for Communication. Proc. of the 15th International Congress on Cybernetics, Namur (BE), Aug. 1998, pp. 373-8. ISBN 2-87215-004-8.

  13. Garagnani, M., Fox, M. & Long, D.P. (1998) Belief Systems for Conflict Resolution. Proc. of 13th European Conference on AI (ECAI-98) - Workshop on Conflicts Among Agents, Brighton, Aug. 1998, pp. 55-60.

  14. Garagnani, M. (1997) Belief Modelling for Discourse Plans. In Fox, M. (ed.) Proc. of 16th Workshop of the UK Planning & Scheduling SIG (PlanSIG 97), Durham, Dec 1997, pp.55-67. ISSN 1368-5708.

  15. Reed, C.A., Long, D.P., Fox, M., & Garagnani, M. (1997) Persuasion as a form of inter-agent negotiation. In: Zhang C., Lukose D. (eds.) Multi-Agent Systems Methodologies and Applications (2nd Australian Workshop on Distributed AI, DAI 1996, Cairns, AU, August 1996), Selected Papers. Berlin: Springer, pp. 120-136. ISBN 978-3-540-63412-6. Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence), vol. 1286. ISSN 0302-9743. DOI: 10.1007/BFb0030086.


CAPITOLI IN VOLUMI CURATI:

  1. Garagnani, M. (2005) A Diagrammatic Inter-Lingua for Planning Domain Descriptions. In Castillo, L., Borrajo, D., Salido, M.A. & Oddi, A. (eds.), Planning, Scheduling and Constraint Satisfaction. Frontiers in Artificial Intelligence and Applications, Vol. 117, pp.129-138. IOS Press. ISBN 978-1-58603-484-9.

  2. Garagnani, M. (2004) A Framework for Hybrid and Analogical Planning. In Vlahavas, I. & Vrakas, D. (Eds.) Intelligent Techniques for Planning, Chapt. II, pp. 35-89. Hershey (PA): IDEA Group. ISBN 9781591404507. DOI: 10.4018/9781591404507.ch002

 

 

Ultimi avvisi

Al momento non sono presenti avvisi.