Foto del docente

Luigi Di Stefano

Full Professor

Department of Computer Science and Engineering

Academic discipline: IINF-05/A Information Processing Systems

Publications

Marcon, Marlon; Spezialetti, Riccardo; Salti, Samuele; Silva, Luciano; Di Stefano, Luigi, Unsupervised Learning of Local Equivariant Descriptors for Point Clouds, «IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE», 2022, 44, pp. 9687 - 9702 [Scientific article]Open Access

Tassinari, Patrizia; Bovo, Marco; Benni, Stefano; Franzoni, Simone; Poggi, Matteo; Mammi, Ludovica Maria Eugenia; Mattoccia, Stefano; Di Stefano, Luigi; Bonora, Filippo; Barbaresi, Alberto; Santolini, Enrica; Torreggiani, Daniele, A computer vision approach based on deep learning for the detection of dairy cows in 2 free stall barn, «COMPUTERS AND ELECTRONICS IN AGRICULTURE», 2021, 182, Article number: 106030 , pp. 1 - 15 [Scientific article]Open Access

De Gregorio D.; Poggi M.; Zama Ramirez P.; Palli G.; Mattoccia S.; Di Stefano L., Beyond the Baseline: 3D Reconstruction of Tiny Objects with Single Camera Stereo Robot, «IEEE ACCESS», 2021, 9, pp. 119755 - 119765 [Scientific article]Open Access

de Gregorio D.; Zanella R.; Palli G.; Di Stefano L., Effective deployment of CNNs for 3DOF pose estimation and grasping in industrial settings, in: 2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), Institute of Electrical and Electronics Engineers Inc., 2021, pp. 7419 - 7426 (atti di: 25th International Conference on Pattern Recognition, ICPR 2020, ita (ELECTR NETWORK), 2021) [Contribution to conference proceedings]Open Access

Salti, Samuele; Lanza, Alessandro; Di Stefano, Luigi, Keypoint detection by wave propagation, «JOURNAL OF ELECTRONIC IMAGING», 2021, 30, Article number: 013003 , pp. 1 - 20 [Scientific article]Open Access

Aleotti, Filippo; Tosi, Fabio; ZAMA RAMIREZ, Pierluigi; Poggi, Matteo; Salti, Samuele; Mattoccia, Stefano; DI STEFANO, Luigi, Neural Disparity Refinement for Arbitrary Resolution Stereo, in: 2021 International Conference on 3D Vision (3DV), IEEE, 2021, pp. 207 - 217 (atti di: 2021 International Conference on 3D Vision (3DV), London, United Kingdom, 1-3 Dec. 2021) [Contribution to conference proceedings]

Spezialetti, Riccardo; Salti, Samuele; Di Stefano, Luigi, Performance Evaluation of 3D Descriptors Paired with Learned Keypoint Detectors, «AI», 2021, 2, pp. 229 - 243 [Scientific article]Open Access

Adriano Cardace; Riccardo Spezialetti ; Pierluigi Zama Ramirez; Samuele Salti; Luigi Di Stefano, RefRec: Pseudo-labels Refinement via Shape Reconstruction for Unsupervised 3D Domain Adaptation, in: 2021 International Conference on 3D Vision (3DV), IEEE, 2021, pp. 331 - 341 (atti di: 9th International Conference on 3D Vision (3DV), London, United Kingdom, Dec. 1 2021 to Dec. 3 2021) [Contribution to conference proceedings]Open Access

Boschi M.; Di Stefano L.; Alessandrini M., SAFFIRE: System for Autonomous Feature Filtering and Intelligent ROI Estimation, in: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer Science and Business Media Deutschland GmbH, 2021, 12664, pp. 552 - 565 (atti di: 25th International Conference on Pattern Recognition Workshops, ICPR 2020, Milano (Online), 2021) [Contribution to conference proceedings]

Berardi G.; Salti S.; Di Stefano L., SketchyDepth: From Scene Sketches to RGB-D Images, in: Proceedings of the IEEE International Conference on Computer Vision, Institute of Electrical and Electronics Engineers Inc., 2021, 2021-, pp. 2414 - 2423 (atti di: 18th IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2021, Online, 2021) [Contribution to conference proceedings]

Spezialetti, Riccardo; Salti, Samuele; Di Stefano, Luigi; Tombari, Federico, 3D Local Descriptors—from Handcrafted to Learned, in: 3D Imaging, Analysis and Applications, Cham, Springer, 2020, pp. 319 - 352 [Chapter or essay]Open Access

Berlati Alessadro.; Scheel Oiver.; Luigi Di Stefano ; Tombari Federico, Ambiguity in Sequential Data: Predicting Uncertain Futures with Recurrent Models, «IEEE ROBOTICS AND AUTOMATION LETTERS», 2020, 5, Article number: 9001185 , pp. 2935 - 2942 [Scientific article]Open Access

Patent n. US12005592B2, Creating training data variability in machine learning for object labelling from images.

F. Tosi, F. Aleotti, P. Zama Ramirez, M. Poggi, S. Salti, L. Di Stefano, S. Mattoccia, Distilled semantics for comprehensive scene understanding from videos, in: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE/CVF, 2020, pp. 4653 - 4664 (atti di: Conference on Computer Vision and Pattern Recognition (CVPR), 2020, Washington, USA, June 16-18, 2020, Seattle) [Contribution to conference proceedings]Open Access

Riccardo Spezialetti, Federico Stella, Marlon Marcon, Luciano Silva, Samuele Salti, Luigi Di Stefano, Learning to Orient Surfaces by Self-supervised Spherical CNNs, in: Advances in Neural Information Processing Systems 33 (NeurIPS 2020), 2020, pp. 1 - 12 (atti di: Advances in Neural Information Processing Systems (NeurIPS 2020), Virtual Conference, 06-12 December 2020) [Contribution to conference proceedings]Open Access