Analisi matematica: spazi di
funzioni olomorfe in una e più variabili, analisi in spazi metrici,
teoria del potenziale.
Nicola Arcozzi si è laureato in matematica presso l'Università
di Milano nel 1989 e ha conseguito il PhD in matematica presso la
Washington University in St Louis nel 1995, avendo come relatore
Albert Baernstein II. Fa parte del dipartimento di matematica
dell'università di Bologna dal 1998. Si occupa di alcuni spazi di
funzioni olomorfe in una e più variabili complesse, degli operatori
su di essi e di analisi su alcuni spazi metrici. I suoi interessi
olomorfi e metrici hanno trovato un punto di contatto nello studio
dello spazio di Drury-Arveson, la cui comprensione richiede
concetti di geometria subriemanniana, e nell'approfondimento di
alcuni aspetti di teoria del potenziale. Dal punto di vista
metodologico, un tratto unificante del suo lavoro è la ricerca di
nuove procedure di discretizzazione per problemi nel continuo.
Preprint e altro: https://site.unibo.it/complex-analysis-lab/en
Mathematics Genealogy Project:
http://www.genealogy.ams.org/id.php?id=1811
MathSciNet:
http://www.ams.org/mathscinet/search/author.html?mrauthid=606003