Foto del docente

Matteo Poggi

Ricercatore a tempo determinato tipo a) (junior)

Dipartimento di Informatica - Scienza e Ingegneria

Settore scientifico disciplinare: ING-INF/05 SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI

Pubblicazioni

Peluso V.; Cipolletta A.; Calimera A.; Poggi M.; Tosi F.; Mattoccia S., Enabling Energy-Efficient Unsupervised Monocular Depth Estimation on ARMv7-Based Platforms, in: Proceedings of the 2019 Design, Automation and Test in Europe Conference and Exhibition, DATE 2019, Institute of Electrical and Electronics Engineers Inc., 2019, pp. 1703 - 1708 (atti di: 22nd Design, Automation and Test in Europe Conference and Exhibition, DATE 2019, Firenze Fiera, ita, 2019) [Contributo in Atti di convegno]

Andraghetti L.; Myriokefalitakis P.; Dovesi P.L.; Luque B.; Poggi M.; Pieropan A.; Mattoccia S., Enhancing Self-Supervised Monocular Depth Estimation with Traditional Visual Odometry, in: Proceedings - 2019 International Conference on 3D Vision, 3DV 2019, Institute of Electrical and Electronics Engineers Inc., 2019, pp. 424 - 433 (atti di: 7th International Conference on 3D Vision, 3DV 2019, Quebec City, Canada, September 16-19 2019) [Contributo in Atti di convegno]

F. Aleotti, F. Tosi, M. Poggi, S. Mattoccia, Generative Adversarial Networks for unsupervised monocular depth prediction, in: Proceedings of 3D Reconstruction in the Wild 2018 (3DRW2018), in conjunction with (ECCV 2018), Springer, 2019, pp. 337 - 354 (atti di: 3D Reconstruction in the Wild 2018 (3DRW2018), ECCV 2018 Workshop, Munich, Germany, September 14, 2018) [Contributo in Atti di convegno]

P. Zama Ramirez, M. Poggi, F. Tosi, S. Mattoccia, L. Di Stefano, Geometry meets semantic for semi-supervised monocular depth estimation, in: Proceedings of the 14th Asian Conference on Computer Vision (ACCV), 2019, pp. 298 - 313 (atti di: 14th Asian Conference on Computer Vision (ACCV), Perth, Australia, December 2-6, 2018) [Contributo in Atti di convegno]

M. Poggi, D. Pallotti, F. Tosi, S. Mattoccia, Guided stereo matching, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019, IEEE/CVF, 2019, pp. 979 - 988 (atti di: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2019), Long Beach, CA, USA, June 16-20 2019) [Contributo in Atti di convegno]

F. Tosi, F. Aleotti, M. Poggi, S. Mattoccia, Learning monocular depth estimation infusing traditional stereo knowledge, in: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2019, pp. 9799 - 9809 (atti di: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2019), Long Beach, CA, USA, June 16-20 2019) [Contributo in Atti di convegno]Open Access

F. Tosi , M. Poggi, S. Mattoccia, Leveraging confident points for accurate depth refinement on embedded systems, in: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2019, Computer Vision Foundation, 2019, pp. 1 - 10 (atti di: 15th IEEE Embedded Vision Workshop (EVW 2019) held in conjunction with CVPR 2019, Long Beach (USA), June 16 2019) [Contributo in Atti di convegno]

Brevetto n. 102019000006964, Metodo di determinazione della profondità da immagini e relativo sistema.

Brevetto n. 102019000022707, Metodo per determinare la profondità da immagini mediante apprendimento auto-adattivo di una rete neurale e relativo sistema.

A. Tonioni, F. Tosi , M. Poggi, S. Mattoccia, L. Di Stefano, Real-time self-adaptive deep stereo, in: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New York, IEEE/CVF, 2019, pp. 195 - 204 (atti di: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2019), Long Beach, CA, USA, June 16-20 2019) [Contributo in Atti di convegno]Open Access

Tosi, Fabio; Poggi, Matteo*; Benincasa, Antonio; Mattoccia, Stefano, Beyond local reasoning for stereo confidence estimation with deep learning, in: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer Verlag, 2018, 11210, pp. 323 - 338 (atti di: 15th European Conference on Computer Vision, ECCV 2018, Munich, Germany, September 8-14, 2018) [Contributo in Atti di convegno]

Poggi, Matteo; Tosi, Fabio; Mattoccia, Stefano, Learning Monocular Depth Estimation with Unsupervised Trinocular Assumptions, in: Proceedings of the 6th international conference on 3D Vision, NEW YORK, NY 10017, IEEE, 2018, pp. 324 - 333 (atti di: 6th international conference on 3D Vision, Verona, September 5-8, 2018) [Contributo in Atti di convegno]

M. Poggi, F. Aleotti, F. Tosi, S. Mattoccia, Towards real-time unsupervised monocular depth estimation on CPU, in: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2018), IEEE, 2018, pp. 1 - 7 (atti di: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2018), Madrid, Spain, October, 1-5, 2018) [Contributo in Atti di convegno]

Poggi, Matteo; Tosi, Fabio; Mattoccia, Stefano, Efficient confidence measures for embedded stereo, in: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer Verlag, «LECTURE NOTES IN COMPUTER SCIENCE», 2017, 10484, pp. 483 - 494 (atti di: 19th International Conference on Image Analysis and Processing, ICIAP 2017, ita, 2017) [Contributo in Atti di convegno]

Poggi, Matteo; Tosi, Fabio; Mattoccia, Stefano, Even More Confident Predictions with Deep Machine-Learning, in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, IEEE Computer Society, «IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS», 2017, 2017-, pp. 393 - 401 (atti di: 12th IEEE Embedded Vision Workshop (EVW2017) held in conjunction with IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), Honolulu, Hawaii (USA), usa, 2017) [Contributo in Atti di convegno]

Ultimi avvisi

Al momento non sono presenti avvisi.