Foto del docente

Lorenzo Isolan

Assegnista di ricerca

Dipartimento di Ingegneria Industriale

Contenuti utili

Bibliografia articolo Notiziario ANPEQ: "UN MODELLO RADIOPROTEZIONISTICO PER LA GESTIONE DI SORGENTI FLASH"

Bennett N., Blasco M., Breeding K., Constantino D., DeYoung A., DiPuccio V., Friedman J., Gall, B. Gardner S., Gatling J., Hagen E.C., Luttman A., Meehan B. T., Misch M., Molnar S., Morgan G., O’Brien R., Robbins L., Rundberg R., Sipe N., Welch D.R., Yuan V. (2018), Development of the dense plasma focus for short-pulse applications. Phys. Plasmas 24(1), 012702. https://doi.org/10.1063/1.4973227 .

Berger M.J., Coursey J.S., Zucker M.A., Chang J. (2005), ESTAR, PSTAR, and ASTAR: Computer Programs for Calculating Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions (version 1.2.3). [Online] Available: http://physics.nist.gov/Star. National Institute of Standards and Technology, Gaithersburg, MD. https://dx.doi.org/10.18434/T4NC7P .

Booth T. E., Goorley J. T., Sood A., Brown F. B., Huges H. G., Sweezy J. E., Bull J. S., Martz R., Zukaitis A., Forster R. A., Prael R. E., Little R. C., White M. C., Lee M. B., Trellue H., Girard S. M. (2003), MCNP - Version 5, Vol. I: Overview and Theory. LA-UR-03-1987.

Buontempo F., Isolan L., Zironi I., Castellani G., Nano R., Pasi F., Tartari A., Mostacci D., Sumini M., Martelli A.M. (2016), Characterization of biological effects in radiotherapy applications of ultra-high dose rate pulses from a plasma focus device. Eur. J. Cancer 61, Suppl. 1, S9–S218. http://dx.doi.org/10.1016/S0959-8049(16)61563-0 .

Buontempo F., Orsini E., Zironi I., Isolan L., Cappellini A., Rapino S., Tartari A., Mostacci D., Cucchi G., Martelli A. M., Sumini M., Castellani G. (2018), Enhancing radiosensitivity of melanoma cells through very high dose rate pulses released by a plasma focus device. PLoS ONE 13(6), e0199312. https://doi.org/10.1371/journal.pone.0199312 .

Chapman B., Jost G., van der Pas R. (2007), Overview of OpenMP. In Using OpenMP: Portable Shared Memory Parallel Programming (MIT Press) pp 384. Books, Computing and Processing, MIT Press, ISBN-13: 978-0262533027. https://ieeexplore.ieee.org/servlet/opac?bknumber=6267237 .

Chernyshova M., Gribkova V. A., Kowalska-Strzeciwilk E., Kubkowska M., Miklaszewski R., Paduch M., Pisarczyk T., Zielinska E., Demina E. V., Pimenov V. N., Maslyaev S.A., Bondarenko G. G., Vilemova M., Matejicek J. (2019), Interaction of powerful hot plasma and fast ion streams with materials in dense plasma focus devices. Fus. Eng. Des. 113, 109–118. https://doi.org/10.1016/j.fusengdes.2016.11.003 .

Council Directive 2013/59/Euratom of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionizing radiation, (2013). https://eur-lex.europa.eu/eli/dir/2013/59/2014-01-17 .

Damideh V., Chin O.H., Saw S.H., Lee P.C.K., Rawat R.S., Lee S. (2019), Characteristics of Fast ion beam in Neon and Argon filled plasma focus correlated with Lee Model Code. Vacuum 169, 108916. https://doi.org/10.1016/j.vacuum.2019.108916 .

Fantuzzi E., Mariotti F., Morelli B., Uleri G. (2006), The implementation in routine of the ENEA new personal photon dosemeter. Rad. Prot. Dos. 120(1–4), 278–282. https://doi.org/10.1093/rpd/nci565 .

Filippov N.V., Filippova T.I., Vinogradov V.P. (1962) Dense high-temperature plasma in a non-cylindrical Z-pinch compression. Nuc. Fus. Supplement.

Goorley T., James M., Booth T., Brown F., Bull J., Cox L. J., Durkee J., Elson J., Fensin M., Forster R. A., Hendricks J. H., Hughes G., Johns R., Kiedrowski B., Martz R., Mashnik S., McKinney G., Pelowitz D., Prael R., Sweezy J., Waters L., Wilcox T., Zukaitis T. (2012), Initial MCNP6 Release Overview. Nucl. Technol. 180, 298-315. http://dx.doi.org/10.13182/NT11-135 .

Goorley, T. (2014), MCNP6.1.1-Beta Release Notes. LA-UR-14-24680.

Gribkov V. A., Miklaszewski R., Paduch M., Zielinska E., Chernyshova M., Pisarczyk T., Pimenov V. N., Demina E. V., Niemela J., Crespo M. L., Cicuttin A., Tomaszewski K., Sadowski M. J., Skladnik Sadowska E., Pytel K., Zawadka A., Giannini G., Longo F., Talab A., Ul'yanenko S. E. (2015), Dense plasma focus: physics and applications (radiation material science, single-shot disclosure of hidden illegal object, radiation biology and medicine, etc.). J. Phys.: Conf. Ser. 591, 012020. https://doi.org/10.1088/1742-6596/591/1/012020 .

Gribkov V.A., Bienkowska B., Paduch M. (2017) Examination of a chamber of a large fusion facility by means of neutron activation technique with nanosecond neutron pulse generated by dense plasma focus device PF-6. Fus. Eng. Des. 125, 109–117. https://doi.org/10.1016/j.fusengdes.2017.10.023 .

Hassan M., Ahmad R., Qayyum A., Murtaza G., Waheed A., Zakaullah M. (2006), Surface modification of AlFe1.8Zn0.8 alloy by using dense plasma focus. Vacuum 81, 291–298. https://doi.org/10.1016/j.vacuum.2006.05.001 .

Heredia-Avalos S., Garcia-Molina R., Fernandez-Varea J.M, Abril I. (2005), Calculated energy loss of swift He, Li, B, and N ions in SiO2, Al2 O, and ZrO2. Phys. Rev. A 72, 052902. https://doi.org/10.1103/PhysRevA.72.052902 .

Inestrosa-Izurieta M. J., Jauregui P., Soto L. (2016) Deposition of materials using a plasma focus of tens of joules. J. Phys.: Conf. Ser. 720, 012045. https://doi.org/10.1088/1742-6596/720/1/012045 .

Isolan L., Sumini M., Teodori F., Bradley D., Jafari S., Mariotti F., Buontempo F. (2019), Dosimetric analysis and experimental setup design for in-vivo irradiation with a Plasma Focus device. Radiat. Phys. Chem. 155, 17–21. https://doi.org/10.1016/j.radphyschem.2018.06.025 .

Isolan L., Teodori F., Mariotti F., Jafari S., Bradley D., Sumini M. (2020) Sensitivity analysis via adjoint Monte Carlo calculations of plasma focus irradiation of micro-silica beads in phantoms. Rad. Phys. Chem. 176, 109017. https://doi.org/10.1016/j.radphyschem.2020.109017 .

Jain J., Moreno J., Avaria G., Pavez C., Bora B., Inestrosa Izurieta M.J., Diez D., Alvarez O., Tapia J., Marcelain K., Armisen R., Soto L. (2016), Characterization of x-rays pulses from a hundred joules plasma focus to study its effects on cancer cells. J. Phys. Conf. Ser. 720, 012043. https://doi.org/10.1088/1742-6596/720/1/012043 .

Jain J., Moreno J., Andaur R., Armisen R., Morales D., Marcelain K., Avaria G., Bora B., Davis S., Pavez C., Soto L. (2017), Hundred joules plasma focus device as a potential pulsed source for in vitro cancer cell irradiation. AIP Adv. 7, 085121. https://doi.org/10.1063/1.4994655 .

Jain J., Moreno J., Andaur R., Armisen R., Avaria G., Bora B., Davis S., Pavez C., Marcelain K., Soto L. (2018) In vitro irradiation of colorectal cancer cells by pulsed radiation emitted from a hundred joules plasma focus device and its comparison with continuous irradiation. J. Phys. Conf. Ser. 1043, 012047. https://doi.org/10.1088/1742-6596/1043/1/012047 .

Karsch L., Beyreuther E., Burris-Mog T., Kraft S., Richter C., Zeil K., Pawelke J. (2012), Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors. Med. Phys. 39 (5), 2447-55.https://doi.org/10.1118/1.3700400 .

Lee S. (2014), Plasma Focus Radiative Model: Review of the Lee Model Code. J. Fusion. Energ. 33, 319–335. https://doi.org/10.1007/s10894-014-9683-8 .

Lewins J. (1965), Importance, the Adjoint Function, the physical basis of variational and perturbation theory in transport and diffusion problems. Copyright @ 1965. Pergamon Press Ltd. First edition 1965. Library of Congress Catalog Card No. 65-14223.

Mather J.W. (1965), Formation of a high‐density deuterium plasma focus. Phys. Fluids 8, 366. https://doi.org/10.1063/1.1761231 .

Mather J. W., Bottoms P. J. (1968), Characteristics of the Dense Plasma Focus Discharge. Phys. Fluids 11, 611. https://doi.org/10.1063/1.1691959 .

Mather J. W., Bottoms P. J., Carpenter J. P., Williams A. H., Ware K. D. (1969), Stability of the Dense Plasma Focus. Phys. Fluids 12, 2343. https://doi.org/10.1063/1.1692352 .

Mather J.W. (1971), Dense Plasma Focus. Meth. Exp. Phys, Plas. Phys., Part B 9 (15), 186-250. https://doi.org/10.1016/S0076-695X(08)60862-5 .

Mosher S. W., Johnson S. R., Bevill A. M., Ibrahim A. M., Daily C. R., Evans T. M., Wagner J. C., Johnson J. O., Grove R. E. (2015) ADVANTG An Automated Variance Reduction Parameter Generator, Rev. 1. United States: N. p. https://doi.org/10.2172/1210162 .

Niranjan R., Rout R. K., Tomar B. S., Ramanjaneyulu P. S., Paranjape D. B., Kaushik T.C. (2018), Application of medium energy plasma focus device in study of radioisotopes. Phys. Lett. A 382, 3365–3368. https://doi.org/10.1016/j.physleta.2018.09.015 .

Paul H., Schinner A. (2001), An empirical approach to the stopping power of solids and gases for ions from 3Li to 18Ar. Nucl. Instr. Meth. Phys. Res. B 179, 299. https://doi.org/10.1016/S0168-583X(01)00576-6 .

Pavez C., Zambra M., Veloso F., Moreno J., Soto L. (2014), Potentiality of a table top plasma focus as X-ray source: radiography applications. J. Phys.: Conf. Ser. 511, 012028. https://doi.org/10.1088/1742-6596/511/1/012028 .

Pouzo J. O., Milanese M. M. (2003), Applications of the Dense Plasma Focus to Nuclear Fusion and Plasma Astrophysics. IEEE Trans Plasma Sci 31, 6. https://doi.org/10.1109/TPS.2003.821475 .

Rawat R. S., Zhang T., Phua C. B. L., Then J. X. Y., Chandra K. A., Lin X., Patran A., Lee P. (2004), Effect of insulator sleeve length on soft x-ray emission from a neon-filled plasma focus device. Plasma Sources Sci. Technol. 13, 569–575. https://doi.org/10.1088/0963-0252/13/4/003 .

Saw S. H., Damideh V., Chong P. L., Lee P., Rawat R. S., Lee S. (2014), A 160 kJ dual plasma focus (DuPF) for fusion-relevant materials testing and nano-materials fabrication. Plasma Science and Applications (ICPSA 2013). Int. J. Mod. Phys.: Conference Series 32, 1460322. https://doi.org/10.1142/S2010194514603226 .

Soto L., Pavez C., Tarifeno A., Moreno J., Veloso F. (2010), Studies on scalability and scaling laws for the plasma focus: similarities and differences in devices from 1 MJ to 0.1 J. Plasma Sources Sci. Technol. 19, 055017. https://doi.org/10.1088/0963-0252/19/5/055017 .

Sumini M., Mostacci D., Rocchi F., Frignani M., Tartari A., Angeli E., Galaverni D., Coli U., Ascione B., Cucchi G. (2006), Preliminary design of a 150 kJ repetitive plasma focus for the production of 18-F. Nucl. Instrum. Methods Phys. Res. Sect. A 562, 1068–1071. https://doi.org/10.1016/j.nima.2006.02.087 .

Sumini M., Previti A., Galassi D., Ceccolini E., Rocchi F., Mostacci D., Tartari A., Pasi F., Facoetti A., Mazzini G., Nano R., Virelli A., Zironi I., Castellani G., Cucchi G., Orecchia R. (2015), Analysis and characterization of the X-ray beam produced by a PF device for radiotherapy applications. X-Ray Spectr. 44, 289–295. https://doi.org/10.1002/xrs.2621 .

Sumini M., Mostacci D., Tartari A., Mazza A., Cucchi G., Isolan L., Buontempo F., Zironi I., Castellani G. (2017), Dose-current discharge correlation analysis in a Mather type Plasma Focus device for medical applications. Rad. Phys. Chem.140, 452-457. https://doi.org/10.1016/j.radphyschem.2017.03.022 .

Virelli A., Gavoci E., Zironi I., Ceccolini E., Rocchi F., Sumini M., Belligotti E. Castellani G. (2011), A system biology approach to ionizing radiation response by mammalian cell lines. Sysbiohealth symposium, 14-15 December 2011, Bologna. Conference Proceedings: System Medicine Interfacing Physics, Mathematics and Medicine, 99-104.

Wagner J. C., Blakeman E. D., Peplow D. E. (2009), Forward-weighted CADIS method for variance Reduction of Monte Carlo calculations of distributions and multiple localized quantities. International Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009). Saratoga Springs, New York, May 3–7, on CD-ROM, American Nuclear Society, LaGrange Park, IL. https://www.ornl.gov/content/forward-weighted-cadis-method-variance-reduction-monte-carlo-calculations-distributions-and .

Werner Z., Piekoszewski J., Szymczyk W. (2001), Generation of high-intensity pulsed ion and plasma beams for material processing. Vacuum 63 (4), 701-708. https://doi.org/10.1016/S0042-207X(01)00261-5 .

Ziegler J. F., Ziegler M.D., Biersack J.P. (2010), SRIM – The stopping and range of ions in matter. Nucl. Instrum. Meth. B 268, 1818–1823. https://doi.org/10.1016/j.nimb.2010.02.091 .

Ultimi avvisi

Al momento non sono presenti avvisi.