GIULIA PAGGI

Ph.D. Student of Nuclear and Subnuclear Physics

@ giulia.paggi@studio.unibo.it

✓ Via del lino 22, Perugia

Perugia, Italia

GiuliaPaggi

EDUCATION

Ph.D. in Physics

Alma mater studiorum - Università di Bologna

2022 – ongoing

Bologna, Italia

• Researh theme: Muon identification within a large hadronic background, and application for tagging neutrino interactions in SND at LHC and for the CMS muon trigger at HL-LHC.

Master degree in Physics

Alma mater studiorum - Università di Bologna

= 2020 - 2022

Bologna, Italia

• Grade:110/110

- Thesis: "Construction and test of a cosmic ray telescope based on CMS Drift Tube chambers and data acquisition prototypes of the Phase-2 upgrade"
- Commissioning of two small replicas of CMS DT chambers, called MiniDTs, built at INFN National Laboratory in Legnaro, which were then brought to Bologna to build a cosmic rays telescope
- Development of the data taking online monitor to check in real-time the status of the MiniDTs and data quality
- Software analysis to reconstruct tracks using hits from the two MiniDTs to assess their performances and study the Phase-2 readout electronics performance
- The results were presented at the 108° National Congress of the Italian Physical Society
- Class: LM-17 Physics

Bachelor degree in Physics

Alma mater studiorum - Università di Bologna

2017 - 2020

Bologna, Italia

- Grade:107/110
- Thesis: "Sviluppo di un algoritmo di trigger per la ricerca di particelle esotiche a lunga vita media a High Luminosity LHC con il rivelatore di muoni di CMS"
- Original research work in the context of HL-LHC upgrade. A study of a trigger algorithm to select Heavy Stable Charged Particles using a simulation of the CMS Phase-2 detector.
- By exploiting the improved time resolution of the Phase-2 DT trigger, a
 method was designed to identify the bunch crossing of collisions that
 originated slow-moving particles which reach the muon system with a
 significant delay.
- Combining the current prompt trigger algorithm and the proposed one, the acceptance for the HSCP increases from 67.4% to 93.4%, extending the sensitivity of the baseline trigger, limited to $\beta \equiv {}^v/c \geq 0.7$, to values of β as low as ~ 0.35 , while achieving an overall efficiency per particle above 90%
- The results were presented at the DT Phase-2 Trigger Software Development meeting and at the CMS Exotica workshop
- Class: L-30 Physics

TEACHING EXPERIENCE

Tutor

Alma mater studiorum - Università di Bologna

2022 – ongoing

Cesena, Italia

- Teaching support for the physics course in the Computer Science and Engineering bachelor degree.
- Tasks include frontal teaching lessons, reception and counseling for student, support the professor during the exams

PROJECTS

Thesis Internship

Alma mater studiorum - Università di Bologna

= 2022

Bologna, Italia

 Laboratory activities aimed at the construction and commissioning of a cosmic ray telescope.
 Software development for data readout, online monitoring and offline analysis.

Summer Student at Fermilab and other US Laboratories

Università di Pisa

= 2021

LNF, Frascati, Italia

 Topical workshop about ongoing and future particle physics experiments planned at Fermilab and related technological improvements

LANGUAGES

Italian English

PROGRAMMING

C++ LabVIEW LATEX Python ROOT

CERTIFICATES

Academic IELTS

■ 02/2020

• Overall band score: 8.0

• CERF level: C1

EDUCATION

High school

Liceo Classico e Musicale Annibale Mariotti

2013-2017

Perugia, Italia

• Classical High School Diploma

• Grade: 100/100

CERTIFICATES

Certified LabVIEW Associate Developer

i 03/2019