Foto del docente

Andrea Tobia Ricolfi

Ricercatore a tempo determinato tipo b) (senior)

Dipartimento di Matematica

Settore scientifico disciplinare: MAT/03 GEOMETRIA

Temi di ricerca

Parole chiave: Spazi di moduli di fasci Invarianti di Donaldson-Thomas Classi virtuali, localizzazione Decomposizioni semiortogonali Anello di Grothendieck delle varietà

  1. Invarianti associati a spazi di moduli. Spazi di moduli di fasci stabili su 3-varietà complesse Y hanno una ricca struttura geometrica, che può essere usata per associare loro invarianti enumerativi (numeri) che rappresentano il numero virtuale di punti dello spazio di moduli; in alcuni casi (quando la 3-varietà Y è di tipo Calabi-Yau), questi numeri possono essere raffinati a invarianti più sofisticati, ad esempio a invarianti K-teoretici o motivici. Si chiamano invarianti di Donaldson-Thomas. Il calcolo di questi invarianti si può approcciare in vari modi, a seconda della natura stessa dell'invariante da calcolare: per esempio a volte si può usare la localizzazione virtuale per gli invarianti K-teoretici, e la teoria delle algebre di Hall e spazi di moduli di rappresentazioni di quiver nel caso degli invarianti motivici.
  2. Geometria di schemi di Hilbert e schemi Quot e loro struttura virtuale, come l'eventuale esistenza di una classe virtuale fondamentale.
  3. Decomposizioni semiortogonali. Una decomposizione semiortogonale di una categoria triangolata T permette di "decomporre" T in sottocategorie più piccole, sperabilmente più semplici da studiare. La teoria delle deformazioni delle decomposizioni semiortogonali ha ancora molti aspetti interessanti da esplorare.
  4. Anelli di motivi, come l'anello di Grothendieck delle varietà, sono interessanti e misteriosi. Si può a volte calcolare la funzione generatrice dei motivi di una data famiglia di spazi di moduli, e osservarne il comportamento. E' una sfida trovare una famiglia di spazi di moduli la cui funzione generatrice motivica associate ammetta una formula chiusa intrinseca.

Ultimi avvisi

Al momento non sono presenti avvisi.