- Docente: Tommaso Calarco
- Crediti formativi: 6
- SSD: FIS/02
- Lingua di insegnamento: Inglese
- Moduli: Tommaso Calarco (Modulo 1) Elisa Ercolessi (Modulo 2) Daniele Bonacorsi (Modulo 3)
- Modalità didattica: Convenzionale - Lezioni in presenza (Modulo 1) Convenzionale - Lezioni in presenza (Modulo 2) Convenzionale - Lezioni in presenza (Modulo 3)
- Campus: Bologna
- Corso: Laurea Magistrale in Physics (cod. 9245)
-
Orario delle lezioni (Modulo 1)
dal 20/09/2024 al 09/10/2024
-
Orario delle lezioni (Modulo 2)
dal 27/09/2024 al 25/10/2024
-
Orario delle lezioni (Modulo 3)
dal 05/11/2024 al 20/12/2024
Conoscenze e abilità da conseguire
At the end of the course students will acquire some fundamental knowledge on: - the theoretical framework for quantum information processing; - theory and applications of quantum programming; - models and methods of quantum machine learning. Students will be able to: - analyze quantum circuits and algorithms, hybrid quantum-classical protocols and quantum machine learning models; - use these tools to solve simple problems in fundamental and applied physics, also with the use of quantum emulators.
Contenuti
- Basics of Quantum Mechanics for Computing.
The qubits: states, evolution and measurements.
Separability and entanglement.
State preparation, distinguishability and fidelity.
Applications to simple quantum information processing protocols.
- Quantum circuits.
Introductions to circuit based universal computers.
Simple and universal quantum gates.
Examples of simple algorithms.
Non cloning theorem and classical computation.
Universality of quantum computation.
Quantum Fourier transform and applications.
Quantum search algorithms.
Quantum Phase Estimation.
Error Correction.
- Complements.
Notions about physical platforms for quantum computation.
Introduction to simulations and other purpose-specific quantum computation.
Hybrid algorithms for optimization problems.
- Quantum Machine Learning.
Review of classical machine learning.
Models and methods of quantum machine learning.
Applications.
Testi/Bibliografia
M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum information, Cambridge
J. Preskill, Quantum information and Computation and Quantum, http://theory.caltech.edu/~preskill/
Other readings will be suggested in class and posted in Virtuale
Metodi didattici
The course consists is organized in 3 modules that will cover Quantum Computing and Quantum Machine Learning Techniques. Hands-on sessions will be organized, students will be introduced to some of the available platforms for emulation and access to real quantum computers, such as IBM-QISKIT.
Orario di ricevimento
Consulta il sito web di Tommaso Calarco
Consulta il sito web di Elisa Ercolessi
Consulta il sito web di Daniele Bonacorsi