Scheda insegnamento


L'insegnamento contribuisce al perseguimento degli Obiettivi di Sviluppo Sostenibile dell'Agenda 2030 dell'ONU.

Parità di genere

Anno Accademico 2019/2020

Conoscenze e abilità da conseguire

At the end of the course, the student has the basic knowledge that gene transcription is intrinsically a dynamic process based on chromatin remodeling and a complex RNAs pool mediating the transcript regulation. In particular, the student will be acquainted with the most up-dated high throughput technologies (microarrays and deep sequencing) from two points of view such as biological and statistics. Data mining and cluster analyses will be acquired by the student.


Module I and II classes' frequency IS MANDATORY.

- Main Topics of Module I:

•DNA and RNA dynamics: the meaning •Microarrays: origin and history and next generation sequencing •Stanford University Method - Competitive method •Affymetrix Method - Non Competitive method •Illumina Method- Non Competitive •Next Generation Sequencing: basic concepts including ChIP-sequencing and DNA methylation sequencing •Analysis and discussion of published articles

- Elements of basic statistics in Module I:

•Normalization methods; •description of the main parametric and non-parametric tests of statistical analysis such as t student test, Wilcoxon signed-rank test, ANOVA, Mann-Whitney test, GLM •main methods for multiple test correction (FDR, Bonferroni, Benjamini-Hochberg). •Unsupervised data analyses •pathways reconstruction and mapping of expression values onto known pathways and ontologies embedded in databases (GeneOntology).

-Practical application of data mining in R environment in Module II. In particular, an overview of the bioinformatic tools currently available to explore and analyse genome-wide and sequencing data, with a particular focus on DNA methylation. Through the use of example-oriented exercises, the student will learn how to use R environment and Bioconductor packages to manage genomic data and answer biological questions

A practical application of ChIP-Sequencing will be performed with a special guest



Somna Datt, Dan Nettleton Editors- Springer 2014



press- reprinted in 2005


Statistics (The Easier Way) with R: an informal text on applied statistics by Nicole M. Radziwil, 2015

Metodi didattici

Lessons will be both frontal in module I and applicative in module II. Take home messages will be highlighted and discussed during the lessons. Published papers will be shown and discussed during the lessons.  

At the end of Module I, a verification test will be proposed to evaluate the level of acquired knowledge and the effectiveness of lessons.

Modalità di verifica dell'apprendimento

Examination will be divided in two parts: 1. home-made report on data processing and analysis (10 scores); 2. written test based on 5 programme-related questions (20 scores). The time for the exam will be one hour.

Laude will be added in the case of excellent performance

Strumenti a supporto della didattica

The teacher will use personal laptop, projector and slides.

Students will be provided with slides related to each lessons and papers/reviews obtained by up-dated scientific literature.

Orario di ricevimento

Consulta il sito web di Miriam Capri

Consulta il sito web di Maria Giulia Bacalini