72725 - EQUAZIONI A DERIVATE PARZIALI

Scheda insegnamento

Anno Accademico 2018/2019

Conoscenze e abilità da conseguire

Al termine del corso, lo studente: - possiede le nozioni di base della teoria delle equazioni alle derivate parziali lineari del secondo ordine con forma caratteristica semidefinita positiva; - sa condurre autonomamente lo studio di modelli differenziali della diffusione, dei moti browniani, della teoria cinetica dei gas; - sa approfondire in modo autonomo lo studio dei problemi di valori al contorno relativi agli operatori delle classi studiate.

Programma/Contenuti

Operatori alle derivate parziali lineari del secondo ordine con forma caratteristica semi-definita positiva: principio del massimo di Picone, principio del massimo forte, propagazione dei massimi.

Il metodo di Perron per l'operatore del calore. Problema di Cauchy per il calore: teoremi di esistenza e teoremi di unicità. Teoremi di tipo Liouville.

Generalità sugli operatori di diffusione di tipo Kolmogorov-Fokker-Planck.

Testi/Bibliografia

Saranno disponibili appunti delle lezioni scritte dal titolare del corso

Metodi didattici

Il corso è strutturato in lezioni frontali in aula che illustrano i concetti fondamentali relativi al programma. Le lezioni sono sempre integrate con esempi relativi ai concetti fondamentali illustrati. Inoltre vengono svolti esercizi in aula.

Modalità di verifica dell'apprendimento


1)  Presentazione della risoluzione scritta dei problemi posti durante lo svolgimento del corso
2) Colloquio orale su alcuni argomenti scelti  dallo studente, in ciascuno dei principali capitoli del corso.

Orario di ricevimento

Consulta il sito web di Ermanno Lanconelli

Consulta il sito web di Giovanni Cupini