87946 - APPLIED ELECTRONICS

Academic Year 2020/2021

  • Moduli: Alessandro Gabrielli (Modulo 1) Alessandro Gabrielli (Modulo 2) Luigi Pio Rignanese (Modulo 3)
  • Teaching Mode: Traditional lectures (Modulo 1) Traditional lectures (Modulo 2) Traditional lectures (Modulo 3)
  • Campus: Bologna
  • Corso: Second cycle degree programme (LM) in Physics (cod. 9245)

Learning outcomes

At the end of the course, the student will learn modern methods to design electronic circuits for analog and digital signals coming from experimental apparata. He/she will also acquire knowledge of the technological processes that are the basis of digital integrated circuits. In particular, in the laboratory sessions he/she will be able to design circuits with analog components and discrete programmable digital circuits (FPGA) and verify their operation. Also, the student will possess the knowledge to design relatively complex electronic circuits for high-speed data acquisition systems. The student will finally participate to specific laboratory sessions dedicated to FPGA implementations of digital architectures and signal transmissions via high-speed electro/optical lines.

Course contents

The course provides the basic skills, in relation to modern methods of electronic design and processing analog and digital signals, to treat signals from devices used in experimental physics. In particular are treated the operational amplifiers in the various configurations and negative-feedback amplifiers.

Study of the n and p-channel MOS transistor and its model for small signals. Study of configurations of amplifiers with common drain and common source.

Study of technological processes as base of the CMOS digital integrated circuits. Examples of MOS circuits used in microelectronics.

Study of transmission lines with equations, constants and termintion methods for good transmission of waveforms.

The course also provides skills to design and test relatively complex digital architectures through the use of VHDL. Technological parameters and characteristic times of the logic gates and sequential logic.

A laboratory experience is concentrated in the programming and testing of an FPGA device.

A part of the course is dedicated to the study of the high frequencies, of the transmission lines and the approach of all the experimental problems which emerge during the transmission of high frequency signals. We study the passive and active analog filters with operational.

An experience is dedicated to the measurement of the effects due to the high frequencies used.

Readings/Bibliography

Slides of the course

Teaching methods

The course is divided into 16 hours of laboratory exercises and 32+8 hours of lectures.

Each student must make a lab experience, executing it alone and provide a final report, to be chosen among the proposed issues.

Assessment methods

The overall evaluation consists in:

- an oral evaluation on all matters of the course,

- an assessment of the laboratory made by the student

Teaching tools

Students will have the transparencies related to topics covered in the course and the material covered during the laboratory experiments.

Office hours

See the website of Alessandro Gabrielli

See the website of Luigi Pio Rignanese

SDGs

Partnerships for the goals

This teaching activity contributes to the achievement of the Sustainable Development Goals of the UN 2030 Agenda.