29209 - FISICA MODERNA M

Anno Accademico 2021/2022

  • Docente: Angelo Carbone
  • Crediti formativi: 6
  • SSD: FIS/01
  • Lingua di insegnamento: Inglese

Conoscenze e abilità da conseguire

Al termine del corso, lo studente ha nuove conoscenze di fisica classica e di fisica moderna (relatività ristretta e meccanica quantistica). E' in grado di: - comprendere la relatività dello spazio e del tempo, la dinamica relativistica e l'equivalenza massa-energia; - comprendere le onde nei solidi, nei gas e le onde elettromagnetiche; - comprendere la natura probabilistica del mondo microscopico, il dualismo onda-corpuscolo, la natura particellare della luce (ivi compreso l'effetto fotoelettrico, la radiazione di corpo nero, gli spettri di emissione degli elementi) e i principali processi che avvengono nella fusione e nella fissione dei nuclei. E' in grado di: -comprendere e -applicare principi di risparmio energetico basati sulla natura quantistica di alcuni dispositivi.

Contenuti

Il corso è suddiviso in tre parti principali:

  • Relatività ristretta
  • Meccanica quantistica
  • Fisica nucleare e sub-nucleare

Ciascuna parte è presentata fornendo agli studenti elementi teorici, sperimentali e storici. Per ciascuna parte verrano dedicate delle ore di esercitazione.

Relavitià ristretta (24 ore)

L'esperimento di Michelson-Morley. I postulati della relatività ristretta. La dilatazione del tempo e la contrazzione delle lunghezze. Le trasformazioni di  Lorentz e le sue proprietà. La causalità in relatività ristretta. Le trasformazioni di accelerazione e velocità relativistiche. Il momento, l'energia e la massa relativistica. Le invarianti di Lorentz. Il vettore quadrimpulso.

Meccanica quantistica (24 ore)

L'equazione di D'Alambert, L'effeto Doppler classico e relativistico. Le onde come soluzione delle equazioni di Maxwell. Il vettore di Pointing.
La radiazione del corpo nero e l'effetto fotoelttrico. La dualità particella onda. L'effetto Compton. La lunghezza d'onda di De Broglie. L'esperimento di Young. L'equazione di Schödinger e la sua quantizzazione. L'equazione di Schödinger equation con potenziali uno dimensionali. Studio di differenti barriere e buche di potenziale. L'effetto tunnel.

Fisica nucleare e sub-nucleare (12 ore)  

Il modello dell'atomo di Bohr, l'atomo di idrogeno e il suo spettro. I numeri quantici che descrivono un elettrone in un atomo. L'esperimento di Stern-Gerlach. La fissione e fusione nucleare. Cenni alla fisica delle particelle elementari.


Testi/Bibliografia

da definirsi

Metodi didattici

Le lezioni saranno svolte alla lavagna, con il supporto di slides e video. Le trasparenze verranno distribuite in anticipo.

Modalità di verifica e valutazione dell'apprendimento

La verifica sarà effettuata mediante un prova a quiz. Se superata la prova a quiz lo studente potrà sostenere, nello stesso appello o in uno degli appelli successivi, la prova orale sul tutto il programma. Le domande all'orale verteranno su tutto il programma con almeno una domanda in relatività ristretta e una domanda in meccanica quantistica.

Strumenti a supporto della didattica

Slides mostrate a lezione ed esercizi con soluzioni.

Orario di ricevimento

Consulta il sito web di Angelo Carbone

Consulta il sito web di Fabio Ferrari